(3.238.36.32) 您好!臺灣時間:2021/02/27 09:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何曉雯
論文名稱:一位六年級教師實踐等量公理解代數問題教學之行動研究
指導教授:林碧珍林碧珍引用關係
學位類別:碩士
校院名稱:國立新竹教育大學
系所名稱:人資處數學教育碩士班
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:中文
中文關鍵詞:算式填充題代數式等量公理意義等量公理解題數學專業成長團體
外文關鍵詞:Fill-in the blank questionsAlgebra expressionsEquality axiomMathematical professional development team
相關次數:
  • 被引用被引用:3
  • 點閱點閱:669
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:91
  • 收藏至我的研究室書目清單書目收藏:1
本研究是描述研究者進行六年級等量公理解代數問題教學的行動歷程,以及在實際行動中所遭遇的困境與解決方法,並進而探究影響教師改變教學策略的因素及教學者在行動過程中自我反思的歷程。
研究者以自身任教的六年甲班為研究場域。參與者除了研究者本身,還包含班上的34位學生,以及跨校數學專業成長團隊成員。在進入教學前,研究者依據文獻、各版本教材、與諍友的討論、學生前測表現來設計教材與活動,並進行教學。整個教學設計包含「依題意列算式填充題」、「列代數式」、「等量公理意義」以及「應用等量公理解題」四個部份。
研究期間,研究者以教材分析、蒐集並分析學生的解題記錄、撰寫教學反思日記、學生晤談、與諍友交換意見等方式作為行動策略的來源。另外,亦參加「跨校教師的數學專業成長團體」,藉由教室觀察與討論會讓研究者對於教學能有更進一步的掌握,並對學生學習的困難能有更深一層的瞭解。
研究結果發現:六年級學生在學習等量公理解代數問題的教材中,其困難有:(1)容易按照數字出現順序列算式填充題。(2)代數式代表數量的概念薄弱。(3)天平的平衡與等式無法連結。(4)等量公理紀錄格式的錯誤。(5)應用等量公理解「加乘」、「加除」問題時容易出錯。教師面對學生學習困難因應的策略有:(1)改變布題情境。(2)全班討論溝通。(3)透過天平的操作和數學等式相對照。(4)從平衡的概念出發修正學生的紀錄格式。(5)回歸四則運算的規則。
最後,本研究對教師教學及未來研究提出建議。在教師教學方面:學生依題意列式的能力會影響應用等量公理解題,因此,教師必須了解算式填充題的重要性;代數式所代表的意義,需讓學生了解;等量公理意義需透過具體操作;應用等量公理解題時,回歸四則運算的規則,較能幫助學生成功解題。而未來研究則可針對算式填充題是否影響學生學習代數及國小六年級是否有能力以等量公理解「減數未知」、「除數未知」問題進行相關研究。

This study described a teacher’s teaching process on sixth-grade the use of equality axiom in solving algebra questions. The researcher discussed the dilemma the teacher encountered in practice and its solutions. The study also examined the factors affecting the changes of teaching strategies and the teacher’s self-reflections.
The researching field was the researcher’s class. The participants included the researcher and the 34 students in the class. The researcher, as the instructor, also attended “mathematical professional team” to discuss the use of equality axiom in solving algebra questions. The whole teaching design included four parts: listing the fill-in the blank questions according to the meaning of the question, listing algebra expressions, significance of equality axiom and solving questions by applying equality axiom.
During the process of the research, the researcher designed teaching materials and activities, revised the activity strategies through the analysis of records of question-solving records from students, and the conversations between the teacher and students, writing the reflection diary, discussing it with students, and exchanging opinions with other teachers. Besides, the researcher also attended “inter-school teachers mathematic professional development team”, and through class observations and seminars, the researcher had a more precise grasp of the teaching and a better understanding of students’ learning difficulties.
The research showed that grade-six students’ difficulties in learning the use of equality axiom in solving algebra questions are :(1)tending to list the numbers in a Formula Fill-in the blank questions according to the sequence of their appearance,(2)concept of algebraic expression representing quantity is weak,(3) the balance and the equality are unable to link,(4) wrong record form of equality axiom,(5)easy to make errors when applying equality axiom in “add–multiplication’’ and “add –Division’’ questions . Teacher’s strategies for dealing with the problems are as follows: (1) Changing problem situation,(2)Whole class discussion,(3)Linking by the concrete operations and the equality,(4)Revises student's record form from the balanced concept,(5)Returning the order of operations.
Finally, this research made some suggestions for future teaching and researches. First, teachers must understand the importance of Fill-in the blank questions. While using equality axiom , returning the order of operations can help students solve problems successfully. In future research, we can debate fill-in the blank problems whether to affect the student to study the algebra or sixth-grade ability to solve “subtrahend-unknown”, “ divisor-unknown” problems.

第一章 緒論
第一節 研究動機1
第二節 研究目的與問題3
第二章 文獻探討
第一節 代數的認知發展4
第二節 代數的知識概念-5
第三節 等量公理的學習困難與迷思概念13
第四節 等量公理相關教學活動19
第五節 等量公理教材分析22
第六節 行動研究31
第三章 研究方法
第一節 研究情境34
第二節 研究架構與期程38
第三節 預計進行的教學策略41
第四節 研究資料的蒐集與分析42
第五節 研究效度45
第四章 我的行動歷程
第一節 了解學生先備經驗的行動歷程48
第二節 先備經驗補救教學的行動歷程58
第三節 兩步驟代數式教學的行動歷程72
第四節 等量公理意義教學的行動歷程90
第五節 應用等量公理解題教學的行動歷程112
第五章 行動後的分享與建議
第一節 行動後的分享150
第二節 建議155
參考文獻158
附錄目錄
附錄一 九年一貫暫行綱要、九年一貫正式綱要與美國NCTM課程標準之比較163
附錄二 四個版本題型比較165
附錄三 六年級等量公理教學活動前(後)測卷168
附錄四 前(後)測卷的題目來源與評量目的172
附錄五 等號概念前測卷174
附錄六 六年級等量公理教學活動前測分析175
附錄七 數學日記-1 185
附錄八 數學日記-2 187
附錄九 數學日記-3 188
附錄十 數學日記-4 190
附錄十一 數學日記-5 192
附錄十二 數學日記-6 194

中文部分
王如敏(2004)。國二學生解一元一次方程式錯誤類型分析研究。未出版碩士論文,國立高雄師範大學,高雄。
王志銘、康淑娟(2006)。等量公理前置教學活動之實踐與探究。台灣數學教師電子期刊,8,21-40。
何基誠(2002)。國小兒童解未知數解題程序的錯誤類型之研究。未出版碩士論文,國立新竹師範學院,新竹。
吳明隆(2001)。教育行動研究導論-理論與實務。台北:五南。
吳芝儀、李奉儒譯(1995)。質的評鑑與研究。台北:桂冠圖書。
呂玉琴(1989)。國小學童對於開放語句的解題策略。台北:遠林。
呂溪木、呂玉琴(1988)。代數在國民小學教學之可行性研究。(國科會專題研究計畫成果報告編號:NSC74-0111-S003-16。NSC74-0111-S003-17) 。台北:中華民國行政院國家科學委員會。
林碧珍(2000)。在職教師數學教學專業發展方案的協同行動研究。新竹師範學院學報,13,115-148。
林碧珍(2001a)。發展國小教師之學生數學認知知識-理論結合實務研究取向的教師專業發展。台北:師大書苑。
林碧珍(2001b)。協助教師實踐學生數學學習歷程檔案之研究。國立新竹師範學院學報,14,163-213。
林碧珍、蔡寶桂、楊媖媖(主編)(2009)。整數乘法替代性教材教法之理論與實務。台北:師大書苑。
邱志賢、毛國楠(2002)。國小六年級學童解未知數文字題之另類概念分析。台東師院學報,13(上),23-60。
洪有情(2004)。青少年的數學概念學習研究-青少年的代數運算概念發展研究(3/3) (國科會專題研究計畫成果報告編號:NSC91-2522-S-003-016-)。台北:中華民國行政院國家科學委員會。
洪有情(2005)。青少年數學概念「學習與教學」研究-青少年代數運算概念的「學習與教學」研究(1/3) (國科會專題研究計畫成果報告編號:NSC93-2521-S-003-007-)。台北:中華民國行政院國家科學委員會。
洪有情(2007)。青少年數學概念「學習與教學」研究-青少年代數運算概念的「學習與教學」研究(3/3) (國科會專題研究計畫成果報告編號:NSC95-2521-S-003-010-)。台北:中華民國行政院國家科學委員會。
夏林清等譯(1997)。行動研究方法導論~教師動手做研究。台北:遠流。(Altricter , Posch& Somekh,2000)
袁 媛(1993)。國中一年級學生的文字符號概念與代數文字題的解題研究。未出版碩士論文,國立高雄師範大學,高雄。
康軒文教事業(2011)。國小數學教師手冊第十二冊。台北:康軒。
張春興(1997)。教育心理學。台北:東華。
教育部(2001)。國民小學九年一貫課程暫行綱要。台北:教育部。
教育部(2003)。國民中小學九年一貫課程綱要。台北:教育部。
教育部(2008)。國民中小學九年一貫課程綱要。台北:教育部。
莊舜如(2006)。國小高年級學童代數思考能力測驗之研究。未出版碩士論文,國立台南教育大學,台南。
許秀如(2007)。國中生文字符號概念的發展。未出版碩士論文,國立彰化師範大學,彰化。
郭汾派、林光賢、林福來(1989)。國中生文字符號概念的發展(國科會專題研究計畫成果報告編號:NSC77-0111-S003-05A)。台北:中華民國行政院國家科學委員會。
陳昭蘭(2008)。高雄市國小六年級學生文字符號概念與代數文字題解題錯誤類型之分析研究。未出版碩士論文,國立高雄師範大學,高雄。
陳惠邦(1998)。教育行動研究。台北:師大書宛。
陳嘉皇(2008)。國小學童等號概念解釋與解題策略初探。台灣數學教師電子期刊,13,34-46。
陳嘉皇(2009)。提升學童等號關係概念理解教學設計與實施成效研究。高雄師大學報,26,21-41。
項武義(1685)。從算術到代數。台北:九章。
楊重駿(1988)。方程式論。台北:東華
楊朝欽(2007)。國小教師代數解題與非代數解題之探究。未出版碩士論文,國立台北教育大學,台北。
廖瓊菁(2001)。國小六年級代數教學之研究。未出版碩士論文,國立屏東師範學院,屏東。
蔡坤憲(譯)(2006)。怎樣解題。台北:天下文化。(G. Polya,1945)。
蔡清田(2001)。教育行動研究。台北:五南。
戴文賓、邱守榕(1999)。國一學生由算數領域轉入代數領域呈現的學習現象與特徵。科學教育,10,148-175。
謝佳叡(2003)。從算術思維過渡到代數思維。九年一貫課程綱要諮詢小組諮詢意見書。線上檢索日期:2010年08月12日。網址:http://www.math.ntnu.edu.tw/~cyc/_private/mathedu/me9/nineyear/philosophy/Appendix_A2.doc
謝孟珊(2000)。以不同符號表徵未知數對國二學生解方程式表現之探討。未出版碩士論文,國立台北師範學院,台北。
謝宜玲(2002)。在課堂討論情境下國一學生文字符號概念及運算相關法則的認知。未出版碩士論文,國立高雄師範大學,高雄。
謝堅、蔣治邦和吳淑娟(2002)。國小數學教材分析-整數的數量關係。台北:國立教育研究院籌備處。
謝闓如(2010)。國小三年級學生之等號概念與概念轉變之研究(國科會專題研究計畫成果報告編號:NSC97-2511-S-142-002)。台北:中華民國行政院國家科學委員會。
鍾靜(2004)。論九年一貫課程數學領域之暫行綱要。載於高新建(主編),課程綱要實施檢討與展望(下)(頁501-521)。台北:國立臺灣師範大學。

英文部分
Baroody, Arthur J. & Ginsburg, Herbert P. (1983). The effects of instruction on children’s understanding of the "Equals" Sign. The Elementary School Journal, 84(2), 198-212.
Booth, L.R.(1988). Children's difficulties in beginning algebra. In A. F. Coxford & A. P. Shulte(Eds.), The Ideas of Algebra, K-12(pp.20-32). Reston, VA NCTM.
Boulton-Lewis, G., Cooper, T., Atweh, B., Pillay, H., Wilss, L., & Mutch, S.(1997). Processing load and the use of concrete representations and strategies for solving linear equations. Journal of Mathematical Behavior,16(4),379-397.
Chalouh, L. & Herscovics, N. (1988). Teaching algebraic expressions in a meaningful way. In A. F. Coxford (Ed.), The ideas of algebra, K-12 (1988 Yearbook, pp. 33-42). Reston, VA: National Council of Teachers of Mathematics.
Collis, K. F. (1975). The Development of Formal Reasoning. Newcastle, Australis: University of Newcastle.
Davis, R. B.(1989).Research studies in how humans think about algebra . In S. Wagne & C. Kieran (Eds), Research issues in the learning and teaching of algebra(pp.266-274). Hillsdale, NJ:Erlbaum; Restom, VA:NCTM.
Filloy, E. & Rojano, T. (1984). Form an arithmetical to an algebra thought. In J. M.Moser (Ed.), Proceedings of the sixth annual meeting of PME – NA (pp.51-56).Madison: University of Wisconsin.
Herscovics, N., & Linchevski, L.(1994). A cognitive gap between arithmetic and algebra. Educational Studies in Mathematics, 27(1), 59-78.
Kieran, C. (1989). The early learn of algebra: a structrual prespective. In S. Wagne & C. Kieran (Eds), Research issues in the learning and teaching of algebra(pp. 33-56). Hillsdale, NJ:Erlbaum; Restom, VA:NCTM.
Kieran,C.(1992).The learning and teaching of school algebra. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning. New York: Macmillan Pub.
Kirshner, D. (1989). The visual syntax of algebra. Journal for Research in Mathematics Education, 20, 274-287.
Knuth, Eric J., Alibali, Martha W., Hattikudur, Shanta, McNeil, Nicole M., & Stephens, Ana C. (2008). The importance of equal sign understanding in the Middle Grades. Mathematics Teaching in the Middle School, 13(9), 514-519.
Knuth, Eric J., Stephens, Ana C., McNeil, Nicole M., & Alibali, Martha W. (2006). Does understanding the equal sign matter? Evidence from Solving Equations. Journal for Research in Mathematics Education, 37(4), 297-312.
Küchemann,D.E.(1981).Algebra. In The CSMS Mathematics Team(Eds.), Children’s Understanding of Mathematics: 11-16. (pp.102-119). London: John Murray.
Lesh, R., Post, T., & Behr, M. (1987), Representations and translations among representations in mathematics learning and problem solving, In C. Janiver (Ed.), Problems of representations in the teaching and learning of mathematics, (pp.33-40), Hilladale, NJ: Lawrence Erlbaum.
Linchevski, L.(1995). Algebra with numbers and arithmetic with letters: A definition of pre-algebra. Journal of Mathematical Behavior, 14, 113-120.
Mason, J. (1996). Expressing generality and roots of algebra. In N. Bednarz, C.Kieran, & L. Lee (Eds.), Approaches to algebra: Perspectives for research and teaching (pp. 65–86). Dordrecht, The Netherlands: Kluwer.
National Council of Teachers of Mathematics (2000). Principle and Standards for School Mathematics. Reston, VA: NCTM.
Resnick,P.(1981). Some misconceptions concerning the concept of variable. The Mathematics Teacher, 74, 418-420.Reston ,VA:NCTM.
Rubenstein,R.N.,&Thompson,D.R.(2001).Learning mathematical symbolism:challenges and instructional strategies. Mathematics Teacher, 94(4), 265-271.
Seo, K.-H., & Ginsburg, H. P. (2003). ‘‘You’ve got to carefully read the math sentence…’’: Classroom context and children’s interpretations of the equals sign. In A. J. Baroody & A. Dowker (Eds.), The development of arithmetic concepts and skills (pp. 161-187). Mahwah, NJ: Erlbaum.
Van De Walle, J. A. (1998). Elementary and Middle School Mathematics: Teaching developmentally (3rd ed.). New York: Longman.
Vergnaud, G. (1984). Understanding mathematics at secondary school level. In A. Bell, B. Low, & J. Kilpatrick (Eds.), Theory, research and practice in mathematical education (pp.27-35). UK: Shell Centre for Mathematical Education
Warren, E., & Cooper, T. J. (2005). Young children’s ability to use the balance strategy to solve for unknows. Mathematics Education Research Journal, 17(1), 58-72.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔