跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 02:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俋筑
研究生(外文):Yi-zu Chen
論文名稱:以結構方程模型分析數位閱讀行為-以iPad2為例
論文名稱(外文):An Analysis of the Digital Reading Employing Structural Equation Modeling--An Example of iPad2
指導教授:黃昱凱黃昱凱引用關係
指導教授(外文):Yu-kai Huang
學位類別:碩士
校院名稱:南華大學
系所名稱:出版與文化事業管理研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:109
中文關鍵詞:結構方程模型重要度-滿意度分析科技接受模型
外文關鍵詞:Structure Equation ModelingTechnology Acceptance ModeliPad2Importance-Performance Analysis
相關次數:
  • 被引用被引用:2
  • 點閱點閱:596
  • 評分評分:
  • 下載下載:214
  • 收藏至我的研究室書目清單書目收藏:4
  隨著網際網路越趨發達,許多大學校園架構無線網路設備,提供無線上網的環境。為了要讓學生有更多的學習資源,台灣某私立大學提出了100學年度入學的大一新鮮人每人贈送一台iPad2的政策,這個政策的目的是要鼓勵新生自主學習,藉此提高學習效率與競爭力。
 
  在此政策下,本研究的目的是要了解大一新生使用iPad2進行閱讀活動的情形。我們運用科技接受模型探究使用者的知覺易用性、知覺有用性以及使用態度之間的關係。此外,我們還使用重要度-滿意度分析來了解使用者在使用iPad2進行閱讀活動後,他們所在意的功能為何。
 
  研究結果發現,(1)男性及女性的知覺易用性和知覺有用性都對使用態度有正向影響,且知覺易用性亦對知覺有用性有正向影響;(2)對男性和女性來說,兩者結果相似,知覺易用性對於知覺有用性有最高的路徑係數,其次為知覺有用性對使用態度,而最低的路徑係數在於知覺易用性對使用態度的路徑中;此外,女性及男性兩者在知覺易用性對知覺有用性的影響是差不多的,而知覺有用性對於使用態度的影響則是女性高於男性,但在知覺易用性對於使用態度的影響方面卻相反,是男性高於女性;(3)根據重要度-滿意度分析,落於第一象限的兩個屬性“有許多免費資源可供下載”及“有公平和明確的退貨規範” 是所有分群的受訪者都認為需要優先改進,而落於第二象限的“閱讀的流暢度”功能應該繼續保持。
  With the internet becoming more developed, wireless network are also being built in most of the colleges and universities. In order to provide freshmen much more resources for learning, a policy of a private university in Taiwan regulated that every freshmen received an iPad2 when they entered. The purpose of the policy is to encourage freshmen to learn autonomously for improving learning effectiveness and competitiveness.
 
  Base on the situation above, the objectives of this study is to understand the conditions of reading on iPad2. We employed technology acceptance model to explore the relationship between users’ perceived ease of use, perceived usefulness and attitude toward use. In addition, we also used importance-performance analysis to comprehend the users’ preferences of the function after they use iPad2 to read.
 
  Salient results include: (1) Both males and females’ perceived ease of use and perceived usefulness had positive effect on attitude toward use, and perceived ease of use also had positive effect on perceived usefulness; (2) For both males and females, the same results were acquired in that perceived ease of use had the highest path coefficient to perceived usefulness, followed by perceived usefulness to attitude toward use, and perceived usefulness had the lowest path coefficient to attitude toward use. In addition, both males and females’ perceived ease of use had similar effects on usefulness, and females’ perceived usefulness had more effect on attitude toward use than males. But perceived ease of use to attitude toward use is the opposite, of which males’ path coefficient was higher than females’. (3) According to importance-performance analysis, each group of respondents represent that there are many free resources available for download and there is an explicit and fair return standard need to be improved preferentially which fall in quadrant Ⅰ (concentrate here); respondents also represent that the function of fluency of reading should be maintained which fall in quadrant Ⅱ (keep up the good work).
摘 要 i
Abstract ii
Table of Contents iv
List of Figures vi
List of Tables vii
 
Chapter 1 Introduction 1
1.1 Research Background and Motivation 1
1.2 Research Objectives 3
1.3 Research Procedures 4
 
Chapter 2 Literature Review 5
2.1 E-Books 5
2.2 Importance-Performance Analysis 8
2.3 Technology Acceptance Model 11
 
Chapter 3 Methodology 15
3.1 Research Framework and Hypothesis 15
3.2 Importance-Performance Analysis 18
3.3 Factor Analysis 20
3.4 Reliability 24
3.5 Validity 26
3.6 Structural Equation Modeling 28
 
Chapter 4 Findings and Results 35
4.1 Data Collection 35
4.2 Descriptive Analysis 37
4.3 Importance-Performance Analysis 43
4.4 x2 test Analysis 49
4.5 Independent Samples T-Test 55
4.6 Exploratory Factor Analysis 59
4.7 Confirmatory Factor Analysis 62
4.8 Structural Equation Modeling 67
 
Chapter 5 Conclusion and Suggestion 74
5.1 Conclusion and Suggestion 74
5.2 Limitations 78
 
Reference 79
 
Appendix A Questionnaire 84
Appendix B Descriptive analysis 88
Appendix C IPA 93
Appendix D Independent samples t-test 101
 
List of Figures
Figure 1-1 Research procedure 4
Figure 2-1 Technology acceptance model 12
Figure 3-1 Research framework 15
Figure 3-2 Importance-performance analysis grid 18
Figure 3-3 Path diagram of a hypothetical model -Submodel 31
Figure 3-4 Six-stage process for SEM 34
Figure 4-1 Mean data plotting in the importance-performance analysis grid for all
respondents 45
Figure 4-2 Convergent validity of perceived ease of use 63
Figure 4-3 Convergent validity of perceived usefulness 65
Figure 4-4 Convergent validity of attitude toward use 66
Figure 4-5 Result of SEM among males 69
Figure 4-6 Result of SEM among females 72
 
List of Tables
Table 2-1 Digital Readers 5
Table 3-1 Variables explanation of SEM 29
Table 3-2 Meaning of the path diagram 30
Table 3-3 Goodness-of-fit index of model 32
Table 4-1 Profiles of the sample (N=302) 38
Table 4-2 Recoded frequency table of the experience of internet using and reading
habits 40
Table 4-3 Recoded frequency table of situation of using iPad2 to read in the future 41
Table 4-4 Mean importance and satisfaction of the elements for all respondents 44
Table 4-5 Each group of elements in quadrant Ⅰ 47
Table 4-6 Each group of elements in quadrant Ⅱ 48
Table 4-7 x 2 test between normal habits and gender 49
Table 4-8 x2 test between normal habits and college 51
Table 4-9 x 2 test between normal habits and pocket money 52
Table 4-10 x2 test between normal habits and college 54
Table 4-11 Independent-samples t-test of importance on each groups 56
Table 4-12 Independent-samples t-test of performance on each group 58
Table 4-13 EFA results for the technology acceptance model 60
Table 4-14 Reliability analysis of research variables 61
Table 4-15 Covariance matrix for the perceived ease of use 63
Table 4-16 Convergent validity of perceived ease of use 63
Table 4-17 Covariance matrix for the perceived usefulness 64
Table 4-18 Convergent validity of perceived usefulness 64
Table 4-19 Covariance matrix for the attitude toward use 66
Table 4-20 Convergent validity of attitude toward use 66
Table 4-21 Covariance matrix of males for the SEM 67
Table 4-22 Model fit of males 68
Table 4-23 Estimates of the direct and indirect effect on attitude among males 69
Table 4-24 Covariance matrix of females for the SEM 70
Table 4-25 Model fit of females 71
Table 4-26 Estimates of the direct and indirect effect on attitude among females 72
Table 4-27 Test results of the hypotheses 73
1.Ajzen, I., Fishbein, M. (1980). Understanding Attitudes and Predicting Social Behaviour. EnglewoodCliffs, NewJersey: Prentice Hall
 
2.Barsky, J. D. (1995). World-class customer satisfaction: Chicage, IL, Irwin Professional Pub.
 
3.Burns, A. C. (1986). Generating marketing strategy priorities based on relative competitive position. Journal of Consumer Marketing, 3(4), 49-56.
 
4.Bush, V. (1945). As we may think. Atlantic Magazine, July.
 
5.Chau, P. Y. K. (1996). An empirical assessment of a modified technology acceptance model. Journal of Management Information Systems, 13(2), 185-204.
 
6.Crompton, J. L., Duray, N. A. (1985). An investigation of the relative efficacy of four alternative approaches to importance-performance analysis. Journal of the Academy of Marketing Science, 13(4), 69-80.
 
7.Davis, F. D. (1989). Perceived usefulness, perceived ease of use and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.
 
8.Davis, F. D., Bagozzi, R. P. , Warshaw, P. R. (1989). User acceptance of computer technlogy: A comparison of two theoretical models. Management Science, 35(8), 982-1003.
 
9.Davis, F. D., Bagozzi, R. P. , Warshaw, P. R. (1993). User acceptance ofinformation technology: System characteristics, user perceptions and perceptions and behaviour impacts. International Journal of Man-Machine Studies, 38(3), 475-487.
 
10.Foasberg, N. M. (2011). Adoption of e-book readers among college students: A survey. Information Technology and Libraries, 30(3), 108-121.
 
11.Folb, B. L., Wessel, C. B. , Czechowski, L. J. (2011). Clinical and academic use of electronic and print books: The health sciences library system e-book study at the University of Pittsburgh. Journal of the Medical Library Association, 99(3), 218-228.
 
12.Graf, L. A., Hemmasi, M. , Nielsen W. (1992). Importance-satisfaction analysis: A diagnostic tool for organizational change. Leadership & Organizational Development Journal, 13(6), 8-12.
 
13.Hair, J. F., Black, B. , Babin, B. , Anderson, R. E. , Tatham, R. L. (2006). Multivariate Data Analysis, 6th Edition. New Jersey: Prentice Hall.
 
14.Herring, C. M. (2006). Coral Reef Valuation and Perceptions of the Tourism Industry in Akumal, Mexico. North Carolina State University, Raleigh.
 
15.Horton, R. P., Buck, T. , Waterson, P. E. , Clegg C. W. (2001). Explaining intranet use with the technology acceptance model. Journal of Information Technology, 16(4), 237-249.
 
16.Igbaria, M., Zinatelli, N. , Cragg, P. , Cavaye, A. L. M. (1997). Personal computing acceptance factors in small firms:A structural equation model. MIS Quarterly, 21(3), 279-305.
 
17.Kitcharoen, K. (2004). The importance-performance analysis of service quality in administrative departments of private universities in Thailand. ABAC Journal, 24(3), 20-46.
 
18.Kwak, D. H., McDaniel, S. R. (2011). Using and extended Technology Acceptance Model in exploring antecedents to adopting fantasy sports league websites. International Journal of Sports Marketing and Sponsorship, 12(3), 240-253.
 
19.Larson, L. C. (2010). Digital readers: The next chapter in e-book reading and response. Journal Home, 64(1), 15-22.
 
20.Legris, P., Ingham, J. , Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & Management, 40(3), 191-204.
 
21.Martilla, J. A., James, J. C. (1977). Importance-performance analysis. Journal of Marketing, 41(1), 77-79.
 
22.Moon, J., Kim, Y. (2001). Extending the TAM for a world-wide-web context. Information & Management, 38(4), 217-230.
 
23.Nancy, M. L., Simha, R. M. (2004). Applying importance-performance analysis to evaluate e-business strategies among small firms. E-Service Journal, 3(3), 29-48.
 
24.Park, S. Y. (2009). An analysis of the technology acceptance model in understanding university students’ behavioral intention to use e-learning. Educational Technology and Society, 12(3), 150-162.
 
25.Reisinger, Y., Turner, L. (1999). Structural equation modeling with Lisrel: application in tourism. Tourism Management, 20(1), 71-88.
 
26.Skok, W., Kophame, A. , Richardson I. (2001). Diagnosing information systems success: Importance-performance maps in the health club industry. Information & Management, 38(7), 409-419.
 
27.Slack, N. (1994). The importance-performance matrix as a determinant of improvement priority. International Journal of Operations & Production Management, 14(5), 59-75.
 
28.Teo, T. (2010a). Explaining the intention to use technology among volitional users in education: An evaluation of the technology acceptance model (TAM) using structural equation modeling. International Journal of Instructional Media, 37(4), 379-389.
 
29.Teo, T. (2010b). A path analysisi of pre-service teachers’ attitudes to computer use: applying and extending the technlolgy acceptance model in an educational context. Interactive Learning Environments, 18(1), 65-79.
 
30.Van der Heijden, H. (2004). User acceptance of hedonic information systems. MIS Quarterly, 28(4).
 
31.Venkatesh, V., Davis, F. D. (2000). A theoretical extension of the technology acceptance model:four longitudinal field studies. Management Science, 46(2), 186-204.
 
32.Wen Chieh-Hua , L., W. L. , Cheng Hsiu-Ling. (2005). Structural equation modeling to determine passenger loyalty toward intercity bus services. Transportation Research Record: Journal of the Transportation Research Board, 1927, 249-255.
 
33.Yuan-Chin Huang , Chih-Hung. Wu., Jovan Chia-Jung Hsu. (2006). Using importance-performance analysis in evaluating Taiwan medium and long distance national highway passenger. The Journal of American Academy of Business, Cambridge, 8(2), 98-104.
 
34.Yuen, A. H. K., Ma, W. W. K. (2008). Exploring teacher acceptance of e-learning technology. Asia-Pacific Journal of Teacher Education, 36(3), 229-243.
 
35.Zhang, J., Mao, E. (2008). Understanding the acceptance of mobile SMS advertising among young Chinese consumers. Psychology and Marketing, 25(8), 787-805.
 
36.Zinn, S., Langdown, N. (2011). E-book usage amongst academic librarians in South Africa. South African Journal of Libraries and Information Science, 77(2), 104-115.
 
37.李育華. (2007). 探討影響消費者採用數位閱讀服務關鍵因素之研究. 華梵大學, 新北市.
 
38.林巧雯. (2011). 影響消費者使用電子書意願的因素. 國立交通大學, 新竹市.
 
39.林欣萍. (2009). 消費者對線上拍賣店配取貨點之選擇行為研究. 國立交通大學, 新竹市.
 
40.迪納斯. (2010). 訂製化科技接受模式方法 :台灣電子書市場分析. 國立交通大學, 新竹市.
 
41.高銘憶. (2006). 以科技接受模式探討體驗經濟對數位內容產品使用意願之影響-以線上漫畫為例. 華梵大學, 新北市.
 
42.張金鐘. (2002). 以科技接受模式探討教師與學生採用數位化教材的態度. 國立中山大學, 高雄市.
 
43.黃友玲. (2010). 數位閱讀浪潮之探究---以iPad為例. 國立政治大學, 台北市.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊