跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/29 02:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:裴宏玫
研究生(外文):Hung-Mei Pei
論文名稱:運用約略集合理論分析演藝廳設施-從表演者的角度探討
論文名稱(外文):Using Rough Sets Theory to Investigate the Facilities of Buildings for the Performing Arts — from the Performers’ Perspective
指導教授:張蓓蒂張蓓蒂引用關係
指導教授(外文):Betty Chang
口試委員:謝宏仁吳智鴻
口試委員(外文):Hung-Ren HsiehChih-Hung Wu
口試日期:2012-06-01
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:建築與永續規劃研究所碩士班
學門:建築及都市規劃學門
學類:建築學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:73
中文關鍵詞:約略集合理論演藝廳表演藝術設施
外文關鍵詞:rough set theoryperforming arts centersperforming artsfacilities
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:1
表演者是最頻繁使用演藝廳的族群,演藝廳部分的設施及空間,也皆是僅有表演者才會接觸到;因此從表演者的角度來了解表演廳的設施是否符合表演者的需求,是至關重要的。經由文獻回顧,將表演者使用空間的關鍵影響屬性項目,歸納為-「聲音」、「燈光」、「空氣品質」、「舞台空間」、「後台設施」、「舞台機械」六項準則,建立為表演者的評估項目,並發展作為問卷調查的內容,以了解使用者於演藝廳設施的基礎需求條件組合之決策。
研究目的為建立一個表演廳評估模型,並分析各表演型態對表演廳設施的需求程度,提供作為表演廳設施更新時的決策重點運用。以約略集合理論為基礎,研究關鍵屬性值的組合及規則,找尋屬性的核心與折減,以創建決策規則模型,並應用模型來解決現況所面臨的問題,再將表演使用者所產生的決策規則加以分析。
由未縮減的基本規則中進行屬性值的折減,並且將所推演之決策法則結果;於下列歸納出不同性質表演者對演藝廳設施優劣的需求:「音樂表演者」對於好的演藝廳,其屬性依序為:(1) A3舞台空間,規則強度為11.355 % (2) A0聲音,為7.692 % (3) A4後台設施,為4.769 %。「舞蹈表演者」對於好的演藝廳,其屬性依序為:(1) A4後台設施,規則強度為13.901 % (2) A5舞台機械,為9.865 % (3) A0聲音和A1燈光,為8.968 %。「戲劇表演者」對於好的演藝廳,其屬性依序為:(1) A1燈光,規則強度為6.116 % (2) A3舞台空間,為6.116 % (3) A5舞台機械,為3.975 %。此為一實證研究,在確認屬性獨立問題及資料集合的近似正確性,即可於各屬性中找出決策規則,並提供有效的決策,以做為未來興建演藝廳時的規劃設計指標。
Because performers are the most frequent users of performing arts centers and the only people who use certain facilities and spaces, examining whether the facilities meet performers’ demands from their perspective is crucial. Following a review of literature, we categorized the key attributes of performance spaces into “sound,” “lighting,” “air quality,” “stage space,” “backstage facilities,” and “stage machinery” criteria to establish evaluative items for performers. These criteria were used in the content of the questionnaire to understand the consumers’ basic requirement combination conditions on performing arts facilities.
The purpose of this study was to establish a performing arts center evaluation model and analyze the needs various performance forms have of performing arts center facilities to provide a reference for performing arts center renovations. We employed rough set theory as the foundation for examining attribute value impact combinations and rules. The results were then applied to identify the core and reduction of attributes to construct a decision rule model. We subsequently employed this model to resolve existing problems and to analyze the decision rules of performers.
In this study, we conducted attribute value reduction of the basic rules and derived the following conclusions based on the identified decision-making principles. Additionally, we identified the demands that various types of performers have of performing arts centers. “Music performers” value the attributes of performing arts centers in the following order: (1) A3 stage space, with a rule strength of 11.355%; (2) A0 sound, with a rule strength of 7.692%
; and (3) A4 backstage facilities, with a rule strength of 4.769%. “Dance performers” value the attributes of performing arts centers in the following order: (1) A4 backstage facilities, with a rule strength of 13.901%; (2) A5 stage machinery, with a rule strength of 9.865%; and (3) A0 sound and A1 lighting, with rule strength of 8.968% each. “Drama performers” value the attributes of performing arts centers in the following order: (1) A1 lighting, with a rule strength of 6.116%; (2) A3 stage space, with a rule strength of 6.116%; and (3) A5 stage machinery, with a rule strength of 3.975%. The results of this empirical study show that to resolve attribute independence problems and ensure accurate estimated data is collected, the various attributes can be used to establish decision rules, provide effective strategies for planning, and determine design indicators for future performing arts center construction.

摘要

第一章、緒論
1.1 研究動機與目的
1.2 研究範圍
1.3 研究方法
1.4 研究架構與流程

第二章、表演藝術設施
2.1 表演藝術設施的建設類型基礎
2.2 表演藝術活動類型
2.3 表演藝術建築空間的構成

第三章、約略集合理論
3.1 約略集合理論的基本概念
3.2 訊息系統與難以辨識的關係
3.3 下界與上界近似
3.4 近似正確性
3.5 屬性的獨立
3.6 屬性的核心與折減
3.7 屬性值的核心與折減
3.8 分類
3.9 決策法則與決策表

第四章、實證研究與分析
4.1 問卷設計
4.2 問卷分析
4.3 實驗步驟與流程
4.4 實驗分析結果

第五章、結論與建議
5.1 結論
5.2 後續研究建議
參考文獻

1. Ancarani, A., & Capaldo, G. (2005). Supporting decision-making process in facilities management services procurement: A methodological approach, Journal of Purchasing & Supply Management, 11, 232-241.

2. Appleton, I. (2008). Buildings for the Performing Arts. Italy: Elsevier Limited.

3. Barron, M. (2006). Objective Assessment of Concert Hall Acoustics, Proceedings of the Institute of Acoustics, 28, 70-78.

4. Beranek, L. (2007). Concert Halls and Opera Houses. Taipei: Technology Books.

5. Bai, S., Jiang, W., Yujian, J., & Zhang, J. (2011). Research on Automatic Networking of Stage Lighting Devices and It’s Key Technologies, 2011 Fourth International Conference on Intelligent Computation Technology and Automation, 661-664.

6. Bellia, L., Bisegna, F., & Spada, G. (2011). Lighting in indoor environments: Visual and non-visual effects of light sources with different spectral power distributions, Building and Environment, 46, 1984-1992.

7. Berti, G. R., Jeong, C. H., & Brunskog, J. (2011), Room acoustic investigation of actors’ positions and orientations for various theatre configurations in a moderate-sized drama theatre, Applied Acoustics, 72, 48-58.

8. Blaszczynski, J., Creco, S., Slowinski, R., & Szelag, M. (2009) Monotonic Variable Consistency Rough Set Approaches, International Journal of Approximate Reasoning, 50, 979-999.

9. Blaszczynski, J., Greco, S., & Slowinski, R. (2012). Inductive discovery of laws using montonic rules, Engineering Applications of Artificial Intelligence, 25, 284-294.

10. Blaszczynski, J., Slowinski, R., & Szelag, M. (2011). Sequential covering rule induction algorithm for variable consistency rough set approaches, Information Sciences, 181, 987-1002.

11. Caldwell, M & Woodside, A. (2003). The role of Cultural capital in Performing Arts Patronage, International Journal of Arts Management, 5(3) 34-49.

12. Chang, B., Hung, H. F., & Lo., C. C. (2007). Supplier Selection Using Rough Set Theory, IEEE, 1461-1465.

13. Chang, B., & Hung, H. F. (2010). A study of using RST to create the supplier selection model and decision-making rules, Expert Systems with Applications, 37, 8284-8295.

14. Chang, J. R, Jheng, Y. H., Lo, C. H., & Chang, B. (2011). Attribute Coding for the Rough Set Theory Based Rule Simplications by Using the Particle Swarm Optimization Algorithm, Intelligent Decision Technologies, SIST 10, 399-407.

15. Chowa, W.K., Fungb, W.Y., & Wonga, L.T. (2002). Preliminary studies on a new method for assessing ventilation in large spaces, Building and Environment, 37, 145-152.

16. Coulangeon, P., Ravet, H., & Roharik, I. (2005). Gender differentiated effect of time in performing arts professions: Musicians, actors and dancers in contemporary France, Poetics, 33, 369-387.

17. Chen, Q., Lee, K., Mazumda, S., Poussou,S., Wang, L., Wang, M,. & Zhao, Z. (2010). Ventilation performance prediction for buildings: Model assessment, 45, 295-303.

18. Dembczynski, K., Greco, S., & Slowinski, R. (2009). Rough set approach to multiple criteria classification with imprecise evaluations and assignments, European Journal of Operational Research, 198, 626-636.

19. Dimitras, A.I., Slowinski, R., Susmaga, R., & Zopounidis, C. (1999). Business failure prediction using rough sets, European Journal of Operational Research, 114, 263-280.

20. Durak, A., Olgunturk, N, C,. Yener, C,. Guvenc, D,. & Gurcınar,Y. (2007). Impact of lighting arrangements and illuminances on different impressions of a room, Building and Environment, 42, 3476-3482.

21. Ekholm, A., & Fridqvist, S. (2000). A concept of space for building classification, product modeling, and design. Automation in Construction, 9, 315-328.

22. Fortemps, P., Greco, S., & Slowinski, R. (2008). Multicriteria decision support using rules that represent rough-graded preference relations, European Journal of Operational Research, 188, 206-233.

23. Giovannini, M., & Astolfi, A,. (2010). The acoustical characterization of orchestra platforms and Uncertainty estimation of the results, Applied Acoustics, 71, 889-901.

24. Greco, S., Matarazzo, B., & Slowinski R. (2001) Rough sets theory for muliticriteria decision analysis. European Journal of Operational Research, 129, 1-4.

25. Griffiths, R. (2007). The acoustics and ventilation design tool applied retrospectively to four 19th century buildings, Building and Environment, 42, 3373-3383.

26. Hamadah, H, A., & Hamouda, H, M. (1997). Assessment of Speech Intelligibility in Large Auditoria Case Study: Kuwait State Mosque, Applied Acoustics, 54(4), 273-289.

27. Han, Jiawei & Morgan Kamber, (2001) “ Data mining: concepts and techniques”, Morgan Kaufmann Publishers, p 316.

28. Hardy, H. (2006). Building type basics for performing arts facilities. Canada: John Wiley & Sons.

29. Holloway, J. (2010). Illustrated Theatre Production Guide. Elsevier Limited, USA.

30. Hume, M., & Winzar, H. (2004). Repurchase in a Performing Arts Context: The Perspective of Value. Dissertation, The Australian National University.

31. Huntington, J. (2007). Control Systems for Live Entertainment (Third Edition), Elsevier, America.

32. Jeon, J. Y., & Barron, M. (2005). Evaluation of stage acoustics in seoul arts center concert hall by measuring stage support, Acoustical Society of America, 117(1), 232-239.

33. Julie, S. (2008). Building the Best Auditorium. American School Board Journal, 44, 30-36.

34. Jiang, W., Su, Z., Zhang, J., & Ren, H. (2010). Research on Detection Architecture and Measurement Method of Stage Machinery Noise. 2010 3rd International Congress on Image and Signal Processing, China.

35. Kaple, D., Rivkin-Fish, Z., Louch, H., Morris, L., & DiMaggio, P. (1998). Comparing sample frames for research on arts organizations: Results of a study in three metropolitan areas. Journal of Arts Management, Law, & Society, 28(1), 41-66.

36. Kavgic, M., Mumovic, D., Stevanovic. Z., & Young. A. (2008). Analysis of thermal comfort and in-door air quality in a mechanically ventilated theatre. Energy and Buildings, 40, 1334-1343.

37. Lee, M.C., Mui, K.W., Wong , L.T., Chan , W.Y., Lee , E.W.M., & C.T. Cheung. (2012). Student learning performance and indoor environmental quality (IEQ) in air-conditioned university teaching rooms, Building and Environment, 49, 238-244.

38. Marshall, A, M., & Barron, M. (2001). Spatial responsiveness in concert halls and the origins of spatial impression, Applied Acoustics, 62, 91-108.

39. McCarthy, K., Brooks, A., Lowell, J., & Zakaras, L.(2001). The Performing Arts in A New Era, Santa Monica, clifa: Rand.

40. Melikov, A., Ivanova, T., & Stefanova, G. (2012). Seat headrest-incorporated personalized ventilation: Thermal comfort and inhaled air quality, Building and Environment, 47, 100-108.

41. Pawlak, Z. (1982). Rough Sets, International Journal of Computer and Information Sciences. 11(5), 341-356.

42. Pawlak, Z. (1991). Rough Sets Theoretical Aspects of Reasoning about Data. Netherlands: Kluwer Academic Publishers.

43. Pawlak, Z. (1997). Rough set approach to knowledge-based decision support. European Journal of Operational Research, 99, 48-57.

44. Pawlak, Z. (1999). Rough Set Theory for Intelligent Industrial Applications. Institute of Theoretical and Applied Informatics, 37-44.

45. Pawlak, Z. (2002). Rough sets and intelligent data analysis. Information Sciences, 147, 1-12.

46. Pawlak, Z., & Skowron, A. (2007). Rudiments of rough sets. Information Sciences, 177, 3-27.

47. Read, G. (2005). “Theater of Public Space: Architectural Experimentation in the Théâtre de l'espace (Theater of space), Paris 1937,” Journal of Architectural Education, vol. 58 no 4, pp.53-62.

48. Penne, L., & Shanahan J.L. (1987). The Role of the Arts in State and Local Economic Development. National Conference of State Legislatures, Denver.

49. Ren, H., Zhang, J., Jiang, W., & Su, Z. (2010). Measurement Method of Background Noise in Theatre Based on Stage Machinery. 2010 Third International Joint Conference on Computational Science and Optimization, China.

50. Sakai, H., & Ando, Y. (2002). Temporal and spatial acoustical factors for listeners in the boxes of historical opera theatres, 258, 527-547.

51. Sato, S., Ando, Y., & Ota, S. (2000). Subjective preference of cellists for the delay time of a single reflection in a Performance, Journal of Sound and Vibration, 232, 27-37.

52. Sheng, W. (2010). Talk Domestic Theater Construction From The Aspect of Management. Entertainment technology, 46, 37-39.

53. Shyng, J.Y., Wang, F.K., Tzeng, G.H., & Wu, K.S. (2007). Rough Set Theory in analyzing the attributes of combination values for the insurance market. Expert Systems with Applications, 32, 56-64.

54. Silvestro, R., & Johnston, R. (1990). The Determinants of Service Quality-Enhancing Hygiene Factors. in the proceedings of the QUISII Symposium St Johns University, New York.

55. Sintas, J.L., & A´lvarez, E.G. (2005). Four characters on the stage playing three games: performing arts consumption in Spain. Journal of Business Research, 58, 1446-1455.

56. Skalevik, M. (2010). Room acoustical parameter values at the listener’s ears – can preferred concert hall acoustics be predicted and explained ?, Proceedings of 20th International Congress on Acoustics, Sydney, Australia.

57. Sperber, M. (2001). Developing a Stage Lighting System from Scratch, Proceedings of the sixth ACM SIGPLAN international conference on Functional programming, 36(10).

58. Sun, M., Liu, Z., Qiu J,. Zhang, Z., & Sinclair, M. (2009). Active Lighting for Video Conferencing, IEEE Transactions on Circuits and Systems for Video Technology, 19, 12.

59. Tanabe, T. (1981). New Series of Architecture33-Theatre Design. Tokyo: Jang Guo Community.

60. Tsumoto, S. (2002). Accuracy and Coverage in Rough Set Rule Induction, Department of Medicine Informatics, 373-380.

61. Walczak, B., & Massart D.L., (1999). Tutorial Rough sets theory. Chemometrics and Intelligent Laboratory Systems, 47, 1-16.

62. Wei, J., Yujian, J., & Hui, R. (2010). Analysis and Prospect of Control System for Stage Lighting, 3rd International Congress on Image and Signal Processing, 3923-3929.

63. Wilk, S., Slowinski, R., Michalowski, W,. & Greco, S. (2005). Supporting triage of children with abdominal pain in the emergency room. European Journal of Operational Research, 160, 696-709.

64. Yang, C.,W. (2009). Confined Space: The Predicament and Prospect of NTCH’s Theaters, Arts review, 19, 69-86.

65. 張家瑞、洪境聰 (2005),以約略集合理論推演鋪面養護策略之研究。行政院國家科學委員會專題研究計畫。新竹縣:明新科技大學土木工程系。

66. 謝玉玲、賴榮平 (2005),文化展演設施建設指標之探討。永續與文化創意設計國際研討會。台南市:國立成功大學建築系研究所。

67. 謝玉玲、賴榮平、謝育穎 (2006),文化展演設施建設需求評估指標之研究。中華民國建築學會「建築學報」,58,113-129。

68. 謝宏仁、謝玉玲、賴榮平 (2006),高高屏地區民眾參與展演藝術活動現況與設施需求分析。藝術教育研究,11,77-111。

69. 謝育穎 (2003),台灣地區文化中心演藝廳用後評估之研究,博士論文,台南市:國立成功大學建築研究所。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top