跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 07:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳勁傑
研究生(外文):Chen,Jin-Jie
論文名稱:直接甲醇燃料電池之陽極採用聚苯胺包覆碳黑還原白金擔體觸媒之研究
論文名稱(外文):A study of Direct methanol fuel cell of anodic using polyaniline coated black carbon reducing Pt catalysts
指導教授:韓錦鈴
指導教授(外文):Han,Jin-Lin
口試委員:韓錦鈴謝國煌蔡宏斌
口試委員(外文):Han,Jin-LinHsieh,Kuo-HuangBing,Tsai-Hong
口試日期:2012-06-27
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:化學工程與材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:122
中文關鍵詞:甲醇燃料電池
外文關鍵詞:Direct methanol fuel cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:100
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
甲醇燃料電池陽極觸媒甲醇毒化現象一直是需解決的嚴重問題,目前大部分是以導入第二種元素來減緩甲醇毒化現象與增加甲醇催化,但由於Ru的價格昂貴製作成本較高不易大量普及,所以本研究乃採用複合型擔體,藉以降低成本並達到改善甲醇毒化現象。
本實驗主要分為三部分,第一部分為使用硝酸改質導電碳黑,增加導電碳黑表面粗糙度利於苯胺聚合。第二部分是將苯胺聚合於改質碳黑表面。第三部分則為使用含浸法(硼氫化鈉還原法)將白金還原於複合型擔體。另針對消除聚苯胺(Polyaniline)易使鉑聚集之現象,所以此部分又細分為兩點進行探討(1)將聚苯胺包覆改質碳黑直接還原白金(2)聚苯胺包覆改質碳黑表面經過再次硝酸改質後還原白金。研究結果顯示,聚苯胺包覆改質碳黑表面,再經硝酸改質後還原白金之觸媒擔體(Pani/C-0.5:1-30min-Pt)比改質碳黑使用硼氫化鈉還原白金(NaBH4-Pt)觸媒與商用觸媒之功率密度來的更高,且聚苯胺包覆碳黑擔體觸媒(Pani/C)發電的持續性為最持久。

Methanol fuel cell anode catalyst methanol poison phenomenon has been a serious problem to be solved the methanol fuel cell anode catalyst, mostly import the second element to reduce the phenomenon, but higher production costs due to the Ru expensive .Therefore, this study was calculated using a composite catalyst, in order to reduce the costs and to improve the methanol poisoning phenomenon.
Theis experiment was divided into three parts, the first part of the modification for using the nitrate conductive carbon black to increase the surface roughness of the conductive carbon black.The second part of the aniline polymerization in the modified nitrate conductive carbon black surface. The third part is the use of impregnation (sodium borohydride reduction method) to restore the nano-size Pt catalyst. In addition, the elimination of polyaniline agglomeration phenomenon, it would be studied by (1) modified polyaniline coated carbon black direct reduction of the platinum ,(2) polyaniline coated modified carbon and the black surface restored after re-nitrate modified the platinum. The results would be shown that the polyaniline coating the modified carbon black surface, and then restored after nitric acid modified platinum catalyst to use sodium borohydride (Pani/C-0.5 :1-30min-Pt)would be might power density than the modified carbon black to restore Platinum (of NaBH4-Pt) catalyst and commercial catalyst, and the working power ofthe polyaniline coated carbon black catalyst (Pani / C) was the most durable.
摘要……………………………………………..……………………………...I
ABSTRACT……………………………..…………………………….. II
致謝…………..………………………………………………………………...III
目錄…………………………………………………………………………....VI
表目錄…………………………………...………………………………VIII
圖目錄……………..……………………………………………………...…..IX
第一章 緒論……………………………………………………...…..1
第二章 文獻回顧…………………………………………………………….2
2-1燃料電池簡介...........................................................................................2
2-1-1燃料電池簡史………………………………………………………....2
2-1-2燃料電池基本原理…………………………………………………...3
2-1-3燃料電池種類…………………………………………………….…..4
2-1-4燃料電池的特點………………………………………………………8
2-2直接甲醇燃料電池(Direct Methanol Fuel Cell ,DMFC)……..…9
2-2-1直接甲醇燃料電池之組成結構………………………………………9
2-2-2直接甲醇燃料電池之工作原理及影響因素………………………..11
2-2-3燃料電池極化現象…………………………………………………..13
2-2-4陽極觸媒之製備方式……………………………………………….14
2-3導電高分子聚苯胺(Polyaniline)…………………………………….17
2-3-1. 聚苯胺(Polyaniline)簡介……………………………………………….17
2-3-2.聚苯胺的結構及導電性………………………………………………...17
第三章 實驗步驟與方法…………………………………………………..19
3-1實驗流程圖……………………………………………………………….19
3-2實驗藥品………………………………………………………………….20
3-3儀器設備………………………………………………………………….21
3-4實驗步驟………………………………………………………………….22
3-4-1導電碳黑硝酸化改質………………………………………………..22
3-4-2聚苯胺包覆改質碳黑(Pani/C 1:1 wt% ;0.5:1 wt%;0.3:1 wt%;0.1;1wt%)…………………………………………………………………..24
3-4-3聚苯胺包附改質碳黑表面硝酸改質………………………………..26
3-4-4含浸法25℃硼氫化鈉製備鉑碳黑擔體觸媒………………………28
3-5實驗測試…………………………………………………………………30
3-5-1熱重分析(TGA)……………………………………………………..30
3-5-2 X-ray粉末繞射儀(XRD)……………………………………………30
3-5-3掃描式電子顯微鏡(SEM)…………………………………………..30
3-5-4穿透式電子顯微鏡(TEM)…………………………………………...31
3-6電化學分析……………………………………………………………….31
3-6-1半電池工作電極製備………………………………………………..31
3-6-2循環伏安法(Cyclic Voltammetry, CV)………………………………32
3-6-3全電池製備電極膜組(MEA)………………………………………..33
3-6-4功率電流密度(Power density)……………………………………..34
3-7樣品代碼說明…………………………………………………………….36
第四章 結果與討論………………………………………………………...37
4-1TGA探討鉑累積含量……………………………………………………..37
4-2XRD探討Pt晶粒大小與S/N分析……………………………………….39
4-3鉑擔體觸媒之SEM分析………………………………………………….41
4-4鉑擔體觸媒之TEM分析………………………………………………....41
4-5電化學測試分析…………………………………………………………43
4-5-1.1聚苯胺包覆碳循環伏安法(CV)測試……………………………...43
4-5-1.2 Pt擔體觸媒CV測試………………………………………………43
4-5-1.3Pt擔體觸媒CV持續性測試……………………………………….44
4-5-2功率電流密度(Power density)……………………………………....45
4-5-2.1自製反應槽玻璃碳電極模擬全電池測試………………………...45
4-5-2.2 自製反應槽MEA測試…………………………………………..46
4-5-2.3甲醇燃料電池系統測試…………………………………………..47
第五章 結論………………………………………………………………….49
表附錄………………………………………………………………………...51
圖附錄………………………………………………………………………...56
参考文獻………………………………………………………………….…102


[1]肖鋼, 電子工業出版社 (2009)
[2]詹姆斯•拉米尼, 科學出版社 原書第二版 (2006)
[3]林. 余. 張. 翁. 李. 林. 吳. 魏. 林. 賴. 曾. 詹. 合著, 滄海書局 第二版 (2006)
[4]H. U. T. Yajima, M. Watanabe, J. Phys., Chem. B ((2004) ,2654)
[5]T.-H. Y. Gu-Gon Park∗, Young-Gi Yoon, Won-Yong Lee, Chang-Soo Kim, Hydrogen Energy ((2003) ,645 – 650)
[6]A. S. M. Sakthivel∗, U. Kunz, T. Turek, Power Sources ((2010) ,7083–7089)
[7]E. T. H.E. Swanson, Natl. Bur. Stand. (U.S.)((1953),539.)
[8]B. T. Fengjuan Miaoa, Li Suna, Tao Liua, Jinchuan Youa, LianweiWanga,∗, Paul K. Chuc, Power Sources ((2010) ,146–150)
[9]邱文欽, 天主教輔仁大學化學系化學研究所博士論文,民國九十六年
[10]S. M. P. D.E. Stilwell, J., Electrochem. Soc. ((1988), 2491.)
[11]R. N. R. Hand, J. Am., Chem. Soc. ((1974) ,850.)
[12]N. R. W. John M. Kinyanjui, Justin Hanks, David W. Hatchett ∗, Electrochimica Acta ((2006), 2825–2835)
[13]M.H. Pournaghi-Azar and B. Habibi, Electrochimica Acta (2007, 4222–4230)
[14]T. C. W. W.C. Chen, A. Gopalan, J., Electrochem. Soc. ((2001))
[15]H. Y. T. Kobayashi, H. Tamura, J., Electroanal. Chem. ( (1984),161)
[16]M. S. W. Y.B. Shim, S.M. Park, J., Electrochem. Soc. ((1990) ,538.)
[17]b. Sainath G. Vaidyaa, 1,2, Sanjay Rastogia,b,∗,1, Aránzazu Aguirreb,2, Synthetic Metals ((2010), 134–138)
[18]J. Z. Xuetong Zhang , Rongming Wang , Zhongfan Liu Carbon ((2004) ,1455–1461)
[19]Y.-M. K. Jong-Ho Choi , Jae-Suk Lee , Ki-Yun Cho , Ho-Young Jung , Jung-Ki Park , and Y.-E. S. In-Su Park Solid State Ionics ((2005), 3031 – 3034)
[20]C. J. L. R.K. Mohamad, Y.T. Park, M.S. Lee, Synth. Met. ((2005), 131.)
[21]W. K. M. M. Cochet, A.M. Benito,M.A. Callejas, M.T. Martínez, J.-M. and J. S. Benoit, O. Chauvet,, Chem. Commun. ((2001), 1450.)
[22]X. H. P. Xu, B. Zhang, N.H. Mack, S. Jeon, H.L. Wang,, Polymer 50 ((2009) ,2624.)
[23]S. P. Cao Y, Heeger AJ., Synth Metals (1993),57:3514–9)
[24]E. A. MacDiarmid AG, Synth Metals (1995),69:93–6.)
[25]R. B. K. J. Huang, J. Am., Chem. Soc ((2004), 851.)
[26]C. W. L. Y.F. Huang, C.S. Chang, M.J. Ho, Electrochimica Acta ((2011), 5679–5685)
[27]S. D. S. Guo, E. Wang,, Small 5 ((2009), 1869.)
[28]Y.-H. C. Namgee Jung , Kwang-Hyun Choi , Ju Wan Lim , Yong-Hun Cho , Minjeh Ahn , and Y.-E. S. Yun Sik Kang Electrochemistry Communications (2010)
[29]B. P. T. Arunima Saxena, and Vinod K. Shahi, J.Phys. Chem. B ((2007),12454-12461)
[30]李宣緯, 國立宜蘭大學化學工程與材料工程學系碩士論文,民國一百年
[31]b. Min-Soo Hyun a, Sang-Kyung Kim a,*, Byungrock Lee a, and Y. S. b. Donghyun Peck a, Doohwan Jung a, Catalysis Today ((2008), 138–145)
[32]B. C. S. Kakarla Raghava Reddy , Chi Ho Yoo , Daewon Sohn , Youngil Lee ,, Colloid and Interface Science ((2009), 160–165)
[33]Y. D. Gengchao Wang , Fei Wang, Xingwei Li, Chunzhong Li, Colloid and Interface Science ((2008), 199–205)
[34]W. Z. Zhenhua Zhou, Suli Wang , Guoxiong Wang , Luhua Jiang , and G. S. Huanqiao Li , Qin Xin ,, Catalysis Today ((2004), 523–528)
[35]Z. Q. Hao ZG, Jiang Z, Li HZ, Powder Technol (2008),183(1):46–52)
[36]S. Y. Jing Qi , Qian Jiang , Ying Liu , Gongquan Sun ,, C A R B O N (( 2 0 1 0 ), 1 6 3 –1 6 9)
[37]K. X. Wang HZ, Zhang L, Li JG., Mater Res Bull (2008),3529–36)
[38]H.-J. K. Singaram Vengatesana, Soo-Kil Kima, In-Hwan Oha, and E. C. Sang-Yeop Leea, Heung Yong Haa, Tae-Hoon Lim, Electrochimica Acta ((2008) ,856–861)
[39]B. R. Mohammad Zhiani*, Jalal Jalili, hydrogen energy (2 0 1 0)
[40]B. Viswanathan, Catalysis Today ((2009) ,52–55)
[41]L. X. Z. Chen, W. Li, M. Waje, Y. Yan,, Nanotechnology 17 ((2006), 5254.)
[42]W. M. A. Lenoe, B.R. Scharifker, J., Electrochem. Soc. ((1992), 438.)
[43]L. M. H. T.C. Wen, A. Gopalan, J., Electrochem. Soc. ((2001))
[44]J. A. M. Koudelka, J. Chem. Soc. Chem, Commun. 15 ((1983),855.)
[45]X. C. Y. Lin, C. Yen, C.M.Wai, J., Phys. Chem. B ((2005), 14410.)
[46]F. H. B. Beden, J.-M. Léger, C. Lamy, C.L. Perdriel, N.R. De Tacconi, R.O. Lezna, and J. A.J. Arvia, Chem. ((1991), 129.)
[47]Y. S. Le Quynh Hoa∗, Hiroyuki Yoshikawa, Masato Saito, Eiichi Tamiya, Electrochimica Acta (2011)
[48]Z. M. Gharibi H, Mirzaie RA, Kheirmand M, Entezami AA, and e. a. Kakaei K, J Power Sources (2006),157(2):703e8.)
[49]M. N. Prasad KR, J Power Sources (2002),103(2):300e4.)
[50]H. U. Y.M. Zhu, T. Yajima, M. Watanabe, Langmuir ((2001), 146.)
[51]P. X. Xu Y, Zeng H, Dai L, Wu H, C R Chimie (2008)



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top