跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/26 04:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳一文
研究生(外文):Chen, YiWun
論文名稱:熱泵輔助蒸餾塔節省能源
論文名稱(外文):Study of Saving Energy in Heat Pump Assisted Distillation
指導教授:陳健台薛梓湖薛梓湖引用關係
指導教授(外文):Chen, CheinTaiHsiue, TzuHu
口試委員:陳健台薛梓湖吳友平蔡美慧
口試委員(外文):Chen, CheinTaiHsiue, TzuHuWu, YoPingTsai, MeiHUi
口試日期:2012-07-03
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:化學工程與材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:75
中文關鍵詞:熱泵蒸餾塔節省能源程序模擬
外文關鍵詞:Heat PumpDistillationSaving EnergyProcess Simulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
蒸餾是一個非常耗能源的製程,主要的原因是蒸餾塔底的再沸器需要大量的蒸氣。本研究以六種沸點相近雙成分之碳氫化合物來分析熱泵輔助蒸餾塔程序與傳統式蒸餾塔做經濟分析以及二氧化碳排放量比較。研究結果發現六種雙成分之頂部蒸氣再壓縮熱泵(Top vapor recompression heat pump )簡單投資回收期分別1.87年、1.77年、2.38年、19.43年、11.9年、2.75年,底部驟沸熱泵(Bottom flashing heat pump)簡單投資回收期分別1.02年、0.83年、0.74年、1.24年、0.95年、2.39年,底部驟沸熱泵去分離是更加有經濟
競爭力於傳統式蒸餾塔。研究結果也發現利用頂部蒸氣再壓縮熱泵可大量節省二氧化碳的排放量分別68.5%、69.1%、62.4%、47.5%、48.3%、63.4%,底部驟沸熱泵可大量節省二氧化碳的排放量分別76%、75.6%、83.7%、74.9%、74%、59.6%,底部驟沸熱泵去分離是更加有經濟競爭力於傳統式蒸餾塔。
Distillation is an expensive process in chemical industries. The main reason was due to the large steam consumption supplied to the bottom reboiler. A heat pump is a saving energy system which can save energy efficiently. The purpose of this study is to investigate economic feasibility and reduction of CO2 by use of heat pump assisted distillation.
The results of study were shown that investment costs could be recovered by 1.87, 1.77, 2.38, 19.34, 11.9, and 2.75 years, respectively by use of top vapor recompression heat pump for six binary systems. But, they were 1.02, 0.83, 0.74, 1.24, 0.95, and 2.39 years by use of bottom flashing heat pump. Obviously, the bottom flashing heat pump assisted distillation has more advantage in respect with economic feasibility as compared with top vapor recompression heat pump. The results also showed that 68.6%, 69.1%, 62.4%, 47.5%, 48.3%, and 63.3% of CO2 were reduced by use of the top vapor recompression heat pump. Again, 76%, 75.6%, 83.7%, 74.9%, 74%, and 59.6% of reduction of CO2 were found by use of bottom flashing heat pump. For reduction of CO2, bottom flashing heat pump assisted distillation would provide a better benefit.
摘要……………………………………………………………………………Ⅰ
Abstract…………………………………………………………………………Ⅱ
致謝……………………………………………………………………………Ⅲ
目錄……………………………………………………………………………Ⅳ
表目錄…………………………………………………………………………Ⅵ
圖目錄…………………………………………………………………………Ⅷ
第一章 緒論……………………………………………………………………1
1.1 前言……………………………………………………………………1
1.2 文獻回顧………………………………………………………………3
1.3 研究動機………………………………………………………………6
第二章 模擬……………………………………………………………………7
2.1 系統特性………………………………………………………………7
2.2 傳統式蒸餾塔…………………………………………………………8
2.3 頂部蒸氣再壓縮熱泵…………………………………………………9
2.4 底部驟沸熱泵………………………………………………………10
第三章 結果與討論…………………………………………………………11
3.1 操作成本……………………………………………………………11
3.2 設備成本……………………………………………………………16
3.3 經濟評估……………………………………………………………18
3.4 二氧化碳排放量……………………………………………………20
第四章 結論…………………………………………………………………21
參考文獻………………………………………………………………………75
附錄A.操作成本計算範例………………………………………………49
附錄B.設備成本計算範例………………………………………………59
附錄C.每年設備投資成本計算範例……………………………………67
附錄D.簡單投資回收期計算範例………………………………………69
附錄E.二氧化碳排放量計算範例………………………………………71
[ 1] J. Humprey, Separation processes: playing a critical role, Chemical Engineering Progress 91 (1995) 31–41.
[ 2] G. Soave,J.A. Feliu, Saving energy in distillation towers by feed splitting, Applied Thermal Engineering 22 (2002) 889–896.
[ 3] T.J. Mix, J.S. Dueck, M.Weinberg, Energy conservation in distillation, Chemical Engineering Progress 74 (1978) 49-55.
[ 4] Z. Fonyo, R.Kurrat, D.W.T.Rippin, I. Meszaros, Comparative analysis of various heat pump scheme applied to C4-splitters, Computers and Chemical Engineering 19 (1995) s1–s6.
[ 5] O. Annakou, P. Mizsey, Rigorous investigation of heat pump assisted distillation, Heat Recovery Systems & CHP 15 (1995) 241–247.
[ 6] J.A. Ferre, F. Castells, J. Flores, Optimization of a distillation column with direct vapor recompression heat pump, Industrial & Engineering Chemistry Research Design and Development 24 (1985) 128–132.
[ 7] K.T. Klemola, J.K. Ilme, Distillation efficiencies of an industrial-scale i-butane/n-butane fractionator, Industrial & Engineering Chemistry Research 35 (1996) 4579–4586.
[ 8] 中技社節能技術發展中心, 蒸汽鍋爐高效率作業技術手冊. 1990.
[ 9] E. Díez, P. Langston, G. Ovejero, M. D. Romero, Economic feasibility of heat pumps in distillation to reduce energy use, Applied Thermal Engineering 29 (2009) 1216–1223.
[10] J.D. Seader, E. J.Henley, Separation Process Principles, John Wiley & Sons. (1998) 310.
[11] G. D. Ulrich, P.T. Vasudevan, How to Estimate Utility Costs, CHEMICAL ENGINEERING (APRIL 2006) 66-69.
[12] L.T. Biegler, E.I. Grossmann, A.W. Westerberg, Systematic Methods of Chemical Process Design. (1997) 110-139.
[13] R. Smith, Chemical Process Design and Integration, John Wiley & Sons, (2005) 17-18.
[14] http://www.engineeringpage.com/technology/thermal/transfer.html.
[15] K.M. Guthrie, Capital cost estimating, Chemical Engineering, (1969,March 24) 114.
[16] G. Soave, Chem. Eng. Sci. 27, (1972)1197.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top