跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/30 00:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李俊威
研究生(外文):Jyun-Wei, LI
論文名稱:熱處理對孟宗竹物理性質、力學性質及膠合性能的影響
論文名稱(外文):Effect of Heat Treatment on the Physical Properties, Mechanical Properties and Glue-joint Performance of Moso Bamboo
指導教授:卓志隆
指導教授(外文):Chih-Lung, Cho
口試委員:卓志隆王松永盧崑宗林亞立羅盛峰
口試日期:2012-06-26
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:森林暨自然資源學系碩士班
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:94
中文關鍵詞:孟宗竹熱處理物理性質力學性質膠合性能耐腐朽性
外文關鍵詞:Moso bambooHeat-treatmentPhysical propertyMechanical propertyBonding performanceResistance against decay
相關次數:
  • 被引用被引用:3
  • 點閱點閱:357
  • 評分評分:
  • 下載下載:77
  • 收藏至我的研究室書目清單書目收藏:0
熱處理為木材改性的方法之一,經熱處理後會永久改變木材的顏色、改善尺寸安定性及耐腐朽性。隨熱處理溫度升高,木材半纖維素降解程度越高,造成木材的質量損失率增加與密度降低,進而使部分強度性質降低。竹材為生長快速的生物資源之一,本研究利用熱處理方法來改善孟宗竹(Phyllostachys pubescens )竹材的物理性質及耐腐朽性能,並探討竹材經熱處理後對力學性質及膠合性能的變化,熱處理條件為溫度170、190、210及230℃和持溫時間1、2及4hr。
結果顯示竹材之體積抗收縮效能(ASE),在170℃、1hr熱處理條件下,為46.45%;經230℃處理可達91.02%,熱處理可有效地改善竹材尺寸安定性。孟宗竹熱處理竹材的顏色與未處理竹材相比,主要是L*值(明度)的降低,差異百分比為40.7~63.8%,熱處理使竹材顏色趨向黑色,且顏色更均勻。190℃熱處理之試材經平刨與180號砂紙砂磨後的表面粗糙度無顯著差異性;在熱處理溫度210℃以下可顯著增加竹材的耐磨性。
力學性質結果顯示,在相同環境下之熱處理後竹材的抗彎彈性模數(MOE)及表面硬度與未處理材相比,在溫度190℃以下處理之竹材強度呈增加的趨勢,而210℃以上會呈減低的趨勢,MOE損失率為-17.3~16.9%;表面硬度損失率為-39.7~36.5 %。熱處理後之竹材縱向抗壓強度與未處理材相比,在溫度190℃以下時,竹材強度呈增加的趨勢,210℃以上則兩者間無顯著差異性,增加率為-5.6~30.0 %。抗彎強度(MOR)及縱向抗拉強度隨著熱處理溫度升高呈減低的趨勢,MOR及縱向抗拉強度損失率分別為12.0~52.5%及50.5~75.6%;熱處理後竹材的韌性明顯降低,顯示材料變脆。
膠合性能結果顯示,間苯二酚膠(RF)與三聚氰胺膠(MF)竹拼板可適用於熱處理製程,且減少了甲醛釋出量。230℃熱處理之MF膠合竹拼板,浸水剝離合格率僅達17%,顯示MF膠合竹拼板不適用於230℃以上之熱處理溫度。膠合剪力隨熱處理溫度升高而減低,熱處理後竹拼板之剪斷強度不具有顯著差異,但熱處理後竹材經尿素膠(UF)膠合之剪斷強度顯著較MF及RF膠合者為低。膠合剪力的減低主要原因為竹材強度降低的關係。竹材經MF及RF膠合拼板後再進行熱處理之竹破率會隨溫度升高而降低,為58~100%;竹材經熱處理後再膠合拼板之試材竹破率為96~100%,顯著高於前者。UF膠合劑僅適用於經210℃以下熱處理後竹材之拼板作業。
經12週耐腐朽試驗後,竹材經溫度210℃以上熱處理後之重量損失率在3%以下,可有效提升竹材耐腐朽性能。

Heat treatment is one of the methods to improve the quality of wood. As a result of the heat treatment, the dimensional stability due to moisture and decay resistance are improved, a darkening of the material is observed. Degradation of hemicellulose increases with temperature and time of heating exposure, which renders mass, density, and some mechanical properties loss. Bamboo is one of the fast-growth bioresources. The objective of this study was to investigate the effect of heat treatment on the physical properties, mechanical properties, glue-joint performance, and decay resistance of Moso bamboo (Phyllostachys pubescens).
Heat treatments were performed at temperature levels of 170℃, 190℃, 210℃, and 230℃ for time durations of 1, 2, and 4 hours. The results indicated a value of 46.45% anti-shrinkage efficiency (ASE) in volume of bamboo specimens could be obtained with heat treatment at temperature of 170℃ for 1hr and could reach a maximum value of 91.02% with 230℃ treatment. These revealed that heat treatment process could improve the dimensional stability of moso bamboo effectively. The color change was primary due to the reduction of L* value after heat treatment. The percentage difference in L* value between heat-treated and control specimens of moso bamboo was 40.7 to 63.8%. The color of bamboo turned dark and more uniform after heat treatment. The difference between surface roughness of bamboo specimens treated above 190℃ were not obvious, in spite of the specimens were processed with planer or sander with #180 sand paper. The abrasion resistance of the bamboo treated below 210℃ could be increased when compared to control samples.
Some mechanical properties of bamboo treated below 190℃ were higher than the untreated samples, and were lower when treated above 210℃. Treatment of bamboo at high temperatures resulted in a reduction in MOE of -17.3 to 16.9% and in hardness of -39.7 to 36.5%. The compression strength parallel to grain of bamboo specimens with heat treatment below 190℃ were significantly higher than that of the controls, but were not obviously different when treated above 210℃. The percentage differences of crushing strength were from -5.6 to 30.0%. The modulus of rupture and tensile strength parallel to grain decreased with an increase of the treated temperatures. The strength loss of MOR and tensile strength were 12.0 to 52.5% and 50.5 to 75.6%, respectively. The heat-treated bamboo showed a significant reduction in toughness than the untreated samples and were also more brittle.
The results indicated the bamboo panels glued with MF and RF could adopt the heat-treated approach. Moreover, the formaldehyde emission from the bamboo panels reduced significantly after heat treatment. According to that only 17% of bamboo panels processed at 230℃ met the requirements of delamination test, this temperature is not suitable for bamboo panels manufacture. The bonding shear strength of bamboo panels decreased with an increase of temperatures. The differences of bonding shear strength between bamboo panels made with three kinds of adhesives were not obviously. However, those made with UF after heat treatment were significantly lower than those made with MF and RF. The reduction of bamboo strength after heat treatment induced a major decrease in bonding strength of bamboo panel. The percentage of bamboo failure were 58 to 100% of bamboo panels made with MF and RF and then processed by heat treatment, and those of heat-treated bamboo units glued with MF and RF were 96 to 100%. With respect to glue-joint performance of bamboo panel, we suggest the suitable temperature for heat-treated bamboo is lower than 210℃.
The weight loss percentage of bamboo specimens treated above 210℃ after 12 weeks decay resistance test were lower than 3%. The resistance against decay attack of moso bamboo could be improved effectively with heat treatment process.

摘 要 i
Abstract iii
謝 誌 vi
表目錄 ix
圖目錄 xi
壹、前言 1
貳、文獻回顧 3
一、竹材性質 3
二、熱處理概念 4
三、熱處理材之基本性質 4
四、熱處理材之力學性質 6
五、熱處理材之表面性質 7
六、熱處理材之膠合性能 8
七、熱處理材之耐腐朽性能 9
参、試驗材料與方法 12
一、材料 12
二、竹拼板製作 14
三、熱處理 16
四、試驗方法 17
肆、結果與討論 37
一、基本物理性質 37
二、表面性質 50
三、力學性質 68
四、膠合性能 77
五、耐腐朽性能 82
伍、結論 84
陸、參考文獻 86

王松永、丁昭義。2004。林產學上冊。初版第七次印刷,pp.315-321。臺灣商務印書館。臺北。
王守範。1962。竹材之防腐防蟲方法。臺灣木材工業(3):13-15。
王振瀾。1989。竹材保存研究之回顧。林產工業8(3):79-85。
林曉洪、林盈宏。2011。熱處理木材之性質。林業研究季刊33(1):91-108。
沈竣研。2011。以熱處理桉樹單板製作合板之性質評估。國立宜蘭大學森林暨自然資源學系碩士論文。宜蘭。
張亞梅、余養倫、于文吉。2009。熱處理對毛竹竹材顏色變化的影響。林產工業23(5):5-7。
馬子斌。1964。臺灣產主要竹材之物理性質及力學性質。林業試驗所報告第106號:p.1-9。臺北。
馬子斌。1982。竹材之利用。林產工業1(1):97-100。
周建斌、鄭叢靜、蔣身學、張齊生。2008。炭化木物理力學性能的研究。林產工業35(6):28-31。
唐讓雷。1989。竹材之強度性質。林產工業8(3):65-78。
黃姿文。2010。熱處理對三種國產造林木物理性質之影響。國立宜蘭大學森林暨自然資源學系碩士論文。宜蘭。
蕭伯川。1971 。竹材之性質與特殊加工。木材工業(15):6-12。
龔錦川。2007。無鉛銲料於不同基材鍍層處理濕潤性與力學性質之研究。國立臺灣科技大學材料科技研究所碩士論文。臺北。
顧煉百、丁濤、王明俊、陳楝。2010。高溫熱處理木材膠合性能的研究。林產工業37(2):15-18。
Ayrilmis, N., J. E. Winandy, and T. L. Laufenberg. 2009. Effects of post thermal- treatment on wettability, surface roughness, and adhesive bonding performance of exterior medium density fiberboard. Mater Manuf Process, 24(5): 594-599.
Bekhta, P., and P. Niemz. 2003. Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57: 539-546.
Bengtsson, C., J. Jermer, A. Clang, and B. Olausson. 2003. Investigation of some technical properties of heat-treated wood. International Research Group on Wood Preservation, Doc. No.IRG/WP 03-40266. Stockholm.
Boonstra, M. J., B. F. Tjeerdsma, and H. A. C. Groeneveld. 1998. Thermal modification of non-durable wood species. Part 1, the Plato technology: Thermal modification of wood. In: International Research Group on Wood Preservation, Document no. IRG/WP98-40123.
Boonstra, M. J., J. V. Acker, E. Kegel, and M. Stevens. 2007. Optimisation of the two-stage heat-treated process: Durability aspects. Wood Sci. Technol. 41:31-57.
Calonego, F. W., E. T. D. Severo, and A. W. Ballarin. 2012. Physical and mechanical properties of thermally modified wood from E. grandis. Eur. J. Wood Prod. 70:453–460
Chang, C. I., and C. T. Keith. 1978. Properties of heat-darkened wood. II. Mechanical properties and gluability. Ottawa: Eastern Forest Products Laboratory, Fisheries and Environment, Canada:1-19.
Chow, S. Z. 1971. Infrared spectral characteristics and surface inactivation of wood at high temperatures.Wood Sci. and Technol. 5(1): 27-39.
Ding, T., L. Gu, and T. Li. 2011. Influence of steam pressure on physical and mechanical properties of heat-treated Mongolian pine lumber. Eur. J. Wood Prod. 69: 121-126.
Doi, S., M. Aoyama, S. Yamauchi, and Y. Kurimoto. 2005. Changes of decay and termite durabilities of Japanese larch (Larix leptolepis) wood due to high-temperature kiln drying processes. J Wood Sci. 51:526-530.
Esteves, B. M. and Pereira H. M. 2009. Wood modufication by heat treatment: a review. BioResources 4(1): 370-404.
Frühwald, E. 2007. Effect of high-temperature drying on properties of Norway spruce and larch. Holz Roh Werkst 65: 411–418.
Follrich, J., U. Müller, and W. Gindl. 2006. Effects of thermal modification on the adhesion between spruce wood (Picea abies Karst.) and a thermoplastic polymer, Holz Roh Werkst 64:373-376.
Gerardin, P., M. Petric, M. Petrissans, J. Lambert, and J. J. Ehrhrardt. 2007. Evolution of wood surface free energy after heat-treated. Polym. Degrad. Stabil. 92:653-657.
Gunduz, G., S. Korkut, D. Aydemir1, and Í. Bekar. 2009. The density, compression strength and surface hardness of heat treated hornbeam (Carpinus betulus ) wood. Maderas. Ciencia y tecnología 11(1): 61-70.
Hakkou, M., M. Pétrissans, A. Zoulalian, and P. Gérardin. 2005. Investigation of wood wettability changes during heat-treated on the basis of chemical analysis. Polym. Degrad. Stabil. 89:1-5.
Hakkou, M., M. Pétrissans, P. Gérardin and A. Zoulalian. 2006.Investigations of the reasons for fungal durability of heat-treated beech wood. Polymer Degradation and Stability 91(2):393-397.
Hill, A. S. 2006. Wood Modification: Chemical, Thermal and Other Processes. John Wiley & Sons, Ltd. pp.99-127.
Hillis, W. E., and A. N. Rozsa. 1985. High temperature and chemical effects on wood stability. General considerations. Wood Sci. Technol. 19: 281- 293.
Inoue, M., M. Norimoto, M. Tanahashi, and R. M. Rowell. 1993. Steam or heat fixation of compressed wood. Wood Fiber Sci. 25(3): 224-235.
Kamdem, D. P., A. Pizzi, and A. Jermannaud. 2002. Durability of heat-treated wood. Holz als Roh- und Werkstoff 60:1-6.
Kartal, S. N., W. J. Hwang, and Y. Imamura. 2007. Water absorption of boron-treated and heat-modified wood. J. Wood Sci. 53: 454-457.
Kocaefe, D., S. Poncsak, G. Doré, and R. Younsi. 2008. Effect of heat-treated on the wettability of white ash and softmaple by water. Holz Roh Werkst 66: 355-361.
Korkut, D. S., and B. Guller. 2008. The effects of heat-treated on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) wood. Bioresource Technology 99:2846–2851.
Korkut, S., M. H. Alma, and Y. K. Elyildirim. 2009. The effects of heat-treated on physical and technological properties and surface roughness of European Hophornbeam (Ostrya carpinifolia Scop.) wood. African Journal of Biotechnology 8(20): 5316-5327.
Kol, H. S., G. Özbay, and S. Altun. 2009. Shear strength of heat-treated tali (erythrophleum ivorense) and iroko (chlorophora excelsa) woods, bonded with various adhesives. BioResources 4(4):1545-1554.
Menezzi, C. H. S., R. Q. Souza, R. M. Thompson, D. E. Teixeira, E. Y. A. Okino, and A. F. Costa. 2008. Properties after weathering and decay resistance of a thermally modified wood structural board. International Biodeterioration & Biodegradation 62:448-454.
Mohareb, A., P. Sirmah, M. Pétrissans, and P. Gérardin. 2011. Effect of heat-treated intensity on wood chemical composition and decay durability of Pinus patula. Eur. J. Wood Prod. DOI 10.1007/s00107-011-0582-7.
Nakano, T., and J. Miyazaki. 2003. Surface fractal dimensionality and hygroscopicity for heated wood, Holzforsch. 57:289-294.
Paul, W., M. Ohlmeyer, and H. Leithoff. 2007. Thermal modification of OSB-strands by a one-step heat pre treatment-Influence of temperature on weight loss, hygroscopicity and improved fungal resistance. Holz Roh Werkst. 65, 57-63.
Petrissans, M., P. Gerardin, I. E. Bakali, and M. Serraj. 2003. Wettability of
heattreated wood. Holzforsch. 57, 301-307.
Sernek, M., M. Boonstra, A. Pizzi, A. Despres, and P. Gerardin, 2008. Bonding performance of heat treated wood with structural adhesives. Holz Roh Werkst. 66(3): 173-180.
Sernek, M., F. A. Kamke, and W. G. Glasser. 2004. Comparative analysis of inactivated wood surface. Holzforsch. 58: 22-31.
Shi, J. L., D. Kocaefe, T. Amburgey, and J. Zhang. 2007. A comparative study on brown-rot fungus decay and subterranean termite resistance of thermally-modified and ACQ-C-treated wood. Holz Roh Werkst 65: 353-358.
Surini, T., F. Charrier, J. Malvestio, B. Charrier, A. Moubarik, P. Caste´ra, and S. Grelier. 2012. Physical properties and termite durability of maritime pine Pinus pinaster Ait., heat-treated under vacuum pressure.
ThermoWood Association. 2003. ThermoWood® Handbook. Finnish, pp.20-31. http://www.thermowood.fi
Tjeerdsma, B. F., M. Boonstra, A. Pizzi, P. Tekely, and H. Militz. 1998. Characterisation of thermally modified wood: Molecular reasons for wood performance improvement. Holz Roh Werkst. 56:149-157.
Vukas, N., I. Horman, and S. Hajdarević. 2010. Heat Treated Wood. Trends in the Development of Machinery and Associated Technology. Mediterranean Cruise, 11-18.
Weiland JJ, and R. Guyonnet. 2003 Study of Chemical Modifications and Fungi Degradation of Thermally Modified Wood Using DRIFTS- pectroscopy. Holz Roh- Werkst 61:216–220.
Windeisen, E., C. Strobel, and G. Wegener. 2007. Chemical changes during the production of thermo-treated beech wood. Wood Sci. Technol. 41: 523-536.
Žvković, V., I. Prša, H. Turkulin, T. Sinković, and V. Jirouš-Rajković. 2008. Dimensional stability of heat treated wood floorings. Drvna Industrija 59(2):69-73.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top