跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/31 23:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何邵濬
研究生(外文):Shao-Chun Ho
論文名稱:中心鑽孔對大斷面熱處理木材性質之影響
論文名稱(外文):Effect Of Core Drilling On The Properties Of Heat-treated Wood With Large Cross Section
指導教授:卓志隆
指導教授(外文):Chih-Lung Cho
口試委員:卓志隆王松永盧崑宗吳四印羅盛峰
口試日期:2012-06-26
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:森林暨自然資源學系碩士班
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:91
中文關鍵詞:熱處理大斷面木材中心鑽孔物理性質力學性質目視分等
外文關鍵詞:Heat treatmentLarge cross sectionCore drillingPhysical propertyMechanics propertyVisual grades
相關次數:
  • 被引用被引用:4
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對柳杉、南方松及花旗松三種樹種,以斷面尺寸14×14 cm、長度50 cm之試材進行熱處理,熱處理條件包括170℃、190℃、210℃及230℃四種處理溫度;1 h、2 h及4 h三種處理時間,比較中心鑽孔處理與未鑽孔處理試材經熱處理後材面之缺點,並針對其物理、力學性能進行評估。
研究結果發現,經熱處理後可有效改善試材的吸濕性與尺寸安定性,其抗吸濕與抗收縮效能可達60%以上,柳杉試材經170℃及190℃熱處理後,其兩種效能的提升明顯高於南方松與花旗松者。各試材經熱處理後之質量、體積與密度有一定程度上的損失;經230℃,4 h熱處理後試材之質量損耗最高,約18%;體積損失率約10%;在170℃及190℃熱處理溫度下,其絕乾密度損失率並不明顯,部分有增加的現象。三個樹種經熱處理後其材面顏色隨處理溫度的提升而加深,而柳杉之邊心材間材色差異經熱處理後明顯降低。中心鑽孔處理能有效降低大斷面木材進行熱處理發生缺點的機率;三個樹種經熱處理後,其抗彎彈性模數大部分呈些微增加的現象,而增加率隨著處理溫度的上升而降低,在230℃處理條件下,柳杉與南方松呈減少之現象,而花旗松仍為增加,整體而言,花旗松保留了較佳的抗彎性能;三個樹種經熱處理後,其抗壓強度均有上升的現象,而增加率隨處理溫度的上升而減少。經熱處理後,其表面粗糙度有下降的現象;在較高熱處理溫度下,木材的耐磨性能會下降。

Three wood species include Japanese cedar (Cryptomeria japonica), southern yellow pine (Pinus spp.), and Douglas fir (Pseudotsuga menziesii) with larger cross section of 14 × 14 cm and 50 cm in the length were used in this study. Heat treatments were carried out at temperature levels of 170℃, 190℃, 210℃, and 230℃ for holding time spans of 1h, 2h, and 4h in a heating unit. The objective of this study was to investigate the effects of core drilling process on the visual grades, physical, and mechanics properties of heat-treated wood specimens. The results showed that the hygroscopicity and dimensional stability of wood could be significantly improved after heat treatment. There could be over 60% increase in the MEE(Moisture Excluding Efficiency) and ASE(Anti Shrinkage Efficiency) compared to the control specimens. The values of MEE and ASE of Japanese cedar treated at temperature levels of 170℃ and 190℃ were significantly higher than those of Douglas fir and southern yellow pine. Some degree of loss in the mass, volume, and over-dry density of test specimens were found after heat treatment. Maximums reduction values for mass and volume were respectively around 18% and 10% of test samples treated at 230℃ for 4 h. The over-dry density of wood specimens were less affected by heat treatment at temperatures of 170℃ and 190℃, moreover, some of them were increased. A darkening of three wood species occurred, with the color change being related to the temperature and time of treatment. The color difference between sapwood and heartwood of Japanese cedar was obviously reduced after thermal modification process. The defects occurred in the core-drilled specimens after heat treatment were significantly lower than those of control samples. These was a slight increase in MOE when three wood species were thermally treated. However, the rate of increase in MOE was subsequent decreased with higher heating temperatures. The values of MOE for Japanese cedar and southern yellow pine treated at temperature of 230℃ were lower than those of untreated samples, while for specimens of Douglas fir were still higher than controls. The bending properties of Douglas fir were less affected by heat treatment compared to the other species in this study. The values of compression strength parallel to grain increased for test species after heat treatment. The rate of increase in compression strength parallel to grain was subsequent decrease with higher heating temperatures and time of periods. The surface roughness of heat-treated specimens were lower than those of untreated samples. The abrasion resistance of wood surface decreased with an increasing in treated temperature.
目錄
摘要 i
Abstract ii
目錄 iv
表目錄 vi
圖目錄 viii
壹、 前言 1
貳、 文獻回顧 2
一、 研究背景 2
二、 木材的乾燥 3
三、 熱處理木材之物理性質 4
(一) 質量與體積 4
(二)熱處理木材的吸濕性與尺寸安定性 5
(三)熱處理木材的材色變化 5
四、 力學性質 6
五、 表面性質 7
參、 材料與方法 8
一、 試驗材料 8
二、 熱處理條件 9
(一) 熱處理溫度 9
(二) 熱處理時間 9
(三) 熱處理程序 9
(四) 熱處理環境 9
三、 試驗方法 12
(一) 物理性質試驗 13
(二) 缺點評估 17
(三) 力學性質 18
(四) 表面性質 21
肆、 結果與討論 22
一、 物理性質 22
(一) 質量變化 22
(二) 體積變化 26
(三) 密度變化 29
(四) 平衡含水率 31
(五) 尺寸安定性 50
(六) 木材顏色變化 56
二、 熱處理缺點變化 65
(一) 熱處理過程應力變化 65
(二) 目視分等 71
(三) 內部割裂 76
三、力學性質 78
(一)抗彎性能 78
(二)抗壓強度 81
四、表面性質 83
(一)表面粗糙度 83
(二)表面耐磨性能 84
伍、結論 86
陸、參考文獻 88


王松永與丁昭義。2004。林產學上冊(初版第七次印刷)。台灣商務印書館股份有限公司,第279-314頁。
王喜民。2007。木材乾燥學。中國林業出版社。第137-141頁。
卓志隆。2011。熱處理木材之物理與抗生物劣化特性。林業研究專訊 18(5):12-17。
涂登云與顧煉百。2004。乾燥過程中馬尾松板材乾燥應變的研究。南京林業大學學報 28(4):23-28。
涂登云與劉彬。2009。木材乾燥應力模型研究。南京林業大學學報 33(3):87-91。
黃姿文。2011。熱處理對三種國產造林木物理性質之影響。國立宜蘭大學森林暨自然資源學系碩士論文。宜蘭。第28-55頁。
翟思湧。1985。中小徑木之乾燥與家具製作。中小徑木利用研討會論文集。農委會林業特刊 1:79-87。
Esteves, B. M., D. J. Idalina, and H. M. Pereira. 2008. Pine wood modification by heat treatment in air. BioResources 3(1):142-154.
Forsman, S. 2008. Heat treated wood- the concept house development. Division of wood physics, Master’s thesis, Luleå University of Technology, Skellefteå, Sweden.
Gindl, W. and A. Teischinger. 2002. Axial compression strength of Norway spruce related to structural variability and lignin content. Composites Part A: Applied Science and Manufacturing 33(12): 1623-1628.
Gündüz, G., Korkut S., and Korkut D.S. 2008. The effect of heat treatment on physical and technological properties and surface roughness of Camiyani black pine wood. Bioresource Technology 99(7):2275-2280.
Hakkou, M., M. Pétrissans, A. Zoulalian, and P. Gérardin. 2005. Investigation of wood wettability variations during heat treatment on the basis of chemical analysis. Polymer Degradation and Stability 89(1): 1-5.
Hakkou, M., M. Pétrissans, P. Gérardin ,and A. Zoulalian. 2006. Investigations of the reasons for fungal durability of heat-treated beech wood. Polymer Degradation and Stability 91(2):393-397.
Hietala, S., S.L. Maunu, F. Sundholm, S. Jämsä, and P. Viitaniemi. 2002. structure of thermally modified wood studied by liquid state NMR measurements. Holzforschung 56: 522–528.
Hill, C. A. S. 2006. Wood modification: chemical, thermal and other processes. John Wiley and Sons, Ltd., pp. 99-127.
Homan, W., B. Tjeerdsma, E. Beckers and A. Joeissen. 2008. Structural and other properties of modified wood. http://www.thermotreatedwood.com/Researches / 3-5-1. pdf
Johansson, D. 2005. Strenght and colour response of solid wood to heat treatment. Division of wood technology, Licentiate thesis. Luleå University of Technology, Skellefteå, Sweden.
Kamdem, D. P., A. Pizzi, and A. Jermannaud. 2002. Durability of heat-treated wood. Holz als Roh- und Werkstoff 60(1):1-6.
Kartal, S. N., W. J. Hwang, and Y. Imamura. 2008. Combined effect of boron compounds and heat treatments on wood properties: chemical and strength properties of wood. Journal of Materials Processing Technology 198(1-3):234–240.
Keey R.B., T.A.G. Langrish, and J.C.F. Walker. 2000. Kiln-drying of lumber. New York: Verlag Berlin Heidelberg Springer.
Kocaefe, D., B. Chaudhry, S. Poncsak, M. Bouazara, and A. Pichette. 2007. Thermo gravimetric Study of high temperature treatment of aspen: effect of treatment parameters on weight loss and mechanical properties. Journal of Materials Science 42(4):854–866.
Kocaefe, D., S. Poncsak, G. Doré and R. Younsi. 2008. Effect of heat treatment in the wettability of white ash and soft maple by water. Holz als Roh- und Werkstoff 66(5):355-361.
Korkut, D. S. and B. Guller. 2008. The effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) Wood. BioResource Technology 99(8):2846–2851.
Kortkut, S. and S. Hiziroglu. 2009. Effect of heat treatment on mechanical properties of Hazelnut wood (Corylus colurna L.). Materials and Design 30(5):1853-1858.
MacLean, J.D. 1953. Effect of steaming on the strength properties of wood. Proceedings of the American Wood Preservers Association, 49: 88-112.
Mitchell, P.H. 1988. Irreversible property changes of small loblolly pine specimens heated in air, nitrogen, or oxygen. Wood and Fiber Science, 20(3):320-355.
Mitchell, R.L., R.M.Seborg, and M.A. Millett. 1953. Effect of heat on the properties and chemical composition of Douglas-fir wood and its major components. Journal of the Forest Products Research Society, 3(4):38-42.
Ozcan, S., A. Ozcifci, S. Hiziroglu, and H. Toker. 2012. Effects of heat treatment and surface eroughness on bonding strength. Construction and Building Materials 33:7-13.
Rusche, H. 1973. Thermal degradation of wood at temperatures up to 200 ℃. PartⅡ. Reaction kinetics of loss of mass during heat treatment of wood. Holz als Roh-und Werkstoff, 31(8): 307-312.
Stamm, A.J. 1956. Thermal degradation of wood and cellulose. Industrial and Engineering Chemisty, 48(3), 413-417.
Surini, T., F. Charrier, J. Malvestio, B. Charrier, A. Moubarik, P. Castéra, and S. Grelier. 2012. Physical properties and termite durability of maritime pine Pinus pinaster Ait., heat-treated under vacuum pressure. Wood Sci Technol 46:487–501.
Sweet, M. S. and J. E. Winandy. 1999. Influence of degree of polymerization of cellulose and hemicellulose on strength loss in fire-retardant-treated southern pine. Holzforschung 53(3):311-317.
Thermo-Wood Association. 2003. ThermoWood Handbook. Finnish . http://www.thermowood.fi
Živković, V., I. Prša, H. Turkulin, T. Sinkovic, and V. Jirouš-Rajkovic. 2008. Dimensional stability of heat treated wood floorings. Drvna Industrija 59 (2):69-73.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top