跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/25 18:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林韓希
研究生(外文):Lin,Hanhsi
論文名稱:飼糧中添加商業酵素對土番鴨生長性能與能量利用之影響
論文名稱(外文):Effect of a Commercial Enzyme ( Hostazym X 250 ) Supplementation on Growth Performance and Energy Utilization of Mule Ducks
指導教授:黃士哲黃士哲引用關係
指導教授(外文):Huang,Shinche
口試委員:林美峰林榮信楊价民
口試委員(外文):Lin, MeifongLin, RongshinnYang, Cheming
口試日期:2012-07-26
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:動物科技學系碩士班
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:106
中文關鍵詞:酵素代謝能土番鴨副產物經濟效益
外文關鍵詞:enzymemetabolizable energyduckby-producteconomic benefit
相關次數:
  • 被引用被引用:2
  • 點閱點閱:365
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
穀物原料中含高量之非澱粉性多醣 ( non-starch polysaccharides, NSP),為一種抗營養因子,會進一步降低營養分之可利用性。
本論文旨在探討飼糧中添加複合式酵素 (Hostazym X 250) 對土番鴨生長性能、血液性狀與小腸絨毛型態之影響。試驗設計採三種不同平台,分別為試驗一 (以含 DDGS 之自配飼料為基礎飼糧)、試驗二 (商業料佐以已純化纖維素部分取代) 及試驗三 (商業料佐以麩皮部分取代)。每個試驗組取 1 日齡雛土番鴨逢機分配於 4 組飼糧中【分別為正常能量不添加酵素組 (positive control, PC)、正常能量並添加酵素組 (positive treatment, PT)、能量降低不添加酵素組 (negative control, NC) 及能量降低並添加酵素組 (negative treatment, NT)】,每處理組三重複,試驗一與試驗二,每重複 10 隻肉鴨,共 120 隻土番鴨;試驗三則為每籠 8 隻,計 96 隻土番鴨。每次試驗為期共七週,採高床飼養,飼料與飲水任食。三種試驗期之負控制 ( negative) 組別,分別調降1 %、3 %、3 % 之代謝能,蛋白質含量各組則相等。酵素添加量依序為 0.175 g / kg、0.525 g / kg 及 0.525 g / kg。各試驗期於 3 週齡與 7 週齡時分別記錄其生長表現及採血與腸絨毛採樣。試驗結果顯示,試驗一添加 DDGS 於玉米-大豆粕基礎飼糧,酵素之添加可改善較低能量之飼料轉換率且經由經濟效益評估,其成本價格亦
較低,但生長性能表現較差。試驗二與試驗三,體重與體增重之表現均無
顯著變化,飼料轉換率與採食量亦無顯著差異;血液性狀方面,試驗二之
鹼性磷酸酶 (alkaline phosphatase, ALP) 相較於對照組有顯著改善,但於試驗三之結果顯示,土番鴨之血糖濃度變異範圍甚大。
腸絨毛型態於試驗二,低能量添加酵素之 NT 組,相較於對照組,其育雛期與生長期十二指腸之絨毛高度以及絨毛高度與腺窩深度之比值無顯著差異;而低能量添加酵素之試驗組對於迴腸之腺窩深度與絨毛高度與腺窩深度之比值亦無顯著影響。試驗三之十二指腸於 3 週齡時,其腺窩深度以低能量之試驗組顯著較對照組增加;絨毛高度與腺窩深度之比值,各試驗組間均達顯著差異性,PT 組最佳,NC 組最差;7 週齡之腺窩深度與絨毛高度與腺窩深度之比值相較於對照組則無顯著差異;迴腸於生長期時添加酵素於低能量之試驗組均顯著改善絨毛高度與腺窩深度之比值。
試驗三之經濟效益以100年行政院農委會公布之屠宰數進行試算,其結果顯示,0-7週齡之飼養期間,商業料佐以麩皮部分取代並添加酵素相較於一般商業料,總計可省下 5.16 (千萬)。綜合上述結果,飼糧中添加酵素於低能量之日糧相較於正常能量之日糧對土番鴨之小腸絨毛型態與飼料轉換率有較顯著之影響,但對血液性狀則影響較小。

Grains contain high levels of non-starch polysaccharide (NSP), which is an anti-nutrient factor. It could further decrease nutrient utilization.
The present study was to investigate the effects of Hostazym X 250 supplementation in the diet on growth performance, blood characteristics and morphology of intestinal villi of Mule ducks. The experimental design was divided into three trials. Trial Ⅰconsisted of experimental diet with DDGS is used as basal diet. Trial Ⅱ consisted of commercial diet that was partially substituted by purified cellulose. Trial Ⅲ consisted of commercial diet that was partially substituted by the wheat bran. For every trial, 1-day-old, identically weighing Mule ducklings were randomly allocated to 4 treatment groups. Each treatment group consisted of 3 replicates, with 10 ducklings for trial Ⅰ and Ⅱ, but 8 ducklings per cage for trial Ⅲ. All of the 4 treatment groups were positive control (normal energy without supplementation of Hostazym X 250, PC), positive treatment (positive control with supplementation of Hostazym X 250, PT), negative control (energy reduction without supplementation of Hostazym X 250, NC), and negative treatment (negative control with supplementation of Hostazym X 250, NT), respectively. Birds were housed in traditional floor pen with wire-mesh grid for seven weeks during experimental period. Feed and water were supplied ad libitum. The metabolizable energy (ME) of negative control groups of the three trials were reduced 1%, 3% and 3% respectively. Protein contents of each group were equal. Enzyme supplementation were 0.175 g / kg, 0.525 g / kg and 0.525 g / kg, respectively. Growth performance, blood characteristics and morphology of intestinal villi of the ducks were observed and recorded at the 3rd and the 7th week of each trial. The results suggested that, in trial I, adding DDGS in corn-soybean meal of the basal diet, which were supplemented with enzyme, improved feed conversion rate. By evaluating economic benefits, the cost price of this treatment group was the lowest, but with poorer growth performance. Although there were no significant differences on body weight and body weight gain in trial Ⅱ and Ⅲ, the feed conversion rate and feed intake improved. In blood characteristics, the alkaline phosphatase (ALP) significantly improved compared with control group in trial Ⅱ, while the values of blood glucose concentration were more variable than the other parameters of trial Ⅲ.
In trial Ⅱ, morphology of intestinal villi showed that low-energy diet with enzyme supplementation not only increased villus height in duodenum but also improved villus height and crypt depth ratio in starter and grower period. The low-energy diet with enzyme supplementation also significantly improved ileal villus crypt depth as well as ileal villus height and crypt depth ratio. In trial Ⅲ, treatment groups with low energy had more significant increase in villus crypt depth of the duodenum than control group at 3 weeks of age. At the same time, villus height and crypt depth ratio were significantly different among each treatment groups. At 7 weeks of age, low energy groups with enzyme supplementation not only improved duodenal villus crypt depth but also duodenal villus height and crypt ratio. Morphology of ileal villi showed that low energy diet with enzyme supplementation could improve the villus height and crypt depth ratio both at 3 and 7 weeks of age.
The evaluation of economic benefits of trial Ⅲ was based on the slaughtering number published in 2011 by Council of Agriculture, Executive Yuan. In comparison to general commercial diet, the economic benefits estimation suggested during 0-7 weeks of trial Ⅲ, with commercial diet that was partially substituted by the wheat bran and enzyme supplementation, could reduce a total of 51.6 million dollars. In conclusion, compared with normal energy diet, low energy diet with enzyme supplementation has more significant effects on morphology of intestinal villi and feed conversion rate of Mule ducks, while having less significant effects on blood characteristics.

謝誌
中文摘要
英文摘要
目錄
表次
圖次
壹、前言
貳、文獻探討
一、飼糧纖維與非澱粉型多醣類
(一) 飼糧纖維之定義
(二) 非澱粉型多醣類之定義
(三) 非澱粉型多醣類之種類與化學結構式
(四) 非澱粉型多醣類之特性
(五) 非澱粉型多醣類之分佈
(六) 飼糧纖維與非澱粉型多醣類之關係
(七) 非澱粉型多醣類對家禽生長表現之影響
二、酵素
(一) 添加酵素之目的
(二) 非澱粉型多醣水解酶之應用
(三) 添加酵素經濟效益之相關探討
三、生長性能之生理評估
(一) 腺窩細胞之增生
(二) 血液性狀變化之相關研究
參、材料與方法
一、試驗用之商業酵素
二、試驗飼糧
(一) 試驗一
(二) 試驗二
(三) 試驗三
三、試驗動物及飼養管理
(一) 試驗一
(二) 試驗二
(三) 試驗三
四、測定項目及分析
(一) 飼糧之組成分分析
(二) 生長性能之分析
(三) 血液性狀之分析
(四) 腸道絨毛型態觀察
(五) 試驗飼糧生產成本之評估
五、統計分析
肆、結果與討論
一、試驗一
(一) 生長性能
(二) 添加商業酵素對土番鴨之經濟效益
二、試驗二
(一) 生長性能
(二) 血液性狀
(三) 腸道絨毛型態
三、試驗三
(一) 生長性能
(二) 血液性狀
(三) 腸道絨毛型態
(四) 添加商業酵素對土番鴨之經濟效益
伍、結論
陸、參考文獻


白火城。1997。鴨之解剖生理。興大農業20 : 1-12。

白火城、季培元、林仁壽。1995。土番鴨生長期間血液成分之變化。中畜會誌 24 (1) : 51-60。

白火城、黃森源、林仁壽。1996。家畜臨床血液生化學。立宇出版社。

江嘉純。2000。小麥及聚木糖酶對白肉雞生長性能與腸道生理之影響。碩士論文。國立中興大學。台中。

李育才、陳添福、林誠一、潘金木、黃加成。1998。飼料中添加乾米酒粕餵飼土番鴨之生產效果與經濟
效益。畜產研究 31 (3) : 239-250。

沈添富。1977。鴨營養研究。1. 土番鴨之蛋白質與能量之需要量。中畜會誌 6 (1-2) : 21-29。

沈添富。1988。鴨隻營養分需要量手冊。國立台灣大學畜牧學系。台北市。

余碧。1998。探討飼料添加酵素之效果。飼料營養雜誌 7 : 71-77。

余碧。2000。探討豆科種實之非澱粉多醣類。畜牧半月刊64 (6) : 61-68。

余碧。2001。生物技術在動物營養上之應用。中國畜牧學會會誌 30 (1) : 23-26。

余碧。2004。酵素與益生菌在飼料應用效果之評估。中國畜牧學會會誌 33 (4) : 249-258。

余碧。2007。酵素特性與在飼料工業之應用。中國畜牧39 (2) : 33-41。

余碧。2010。酵素。畜牧要覽飼料與營養篇,第381- 405頁。中國畜牧學會。

林榮新、蘇晉暉、黃振芳、李舜榮、施柏齡、何泰全。2010。飼糧中添加蜂膠萃取物對土番鴨生長性狀及腸道絨毛型態之影響。畜產研究 43 (3) : 207-217。

祝書賢。2002。非澱粉多醣類之醱酵對肉雞腸道生理之影響。碩士論文。國立中興大學。台中。

黃玉鴻。2007。高玉米價格對飼料成本的衝擊。現代養豬28 (8) : 26-28。

劉昌宇。2008。高飼料原料價格對豬飼料營養與生產的影響。中國畜牧40 (1) : 16-22。

鄭德志。2000。利用酶製劑改善鴨隻對非澱粉多醣的利用。畜牧半月刊64 (6) : 57-60。

徐志宏、陳德皓、王世晞。1987。基礎組織學,第569- 583頁。藝軒圖書出版社。

楊華、傅衍、陳安國。2001。豬血液生化指標與生產性能的關係。國外畜牧科技 28 : 34-37。

Acamovic, T. 2001. Commercial applications of enzyme technology for poultry production. World's Poult. Sci. 57 : 225-243.

Adeola, O. 2006. Review of research in duck nutrient utilization. Intl. J. Poult.Sci. 5 : 210-218.

Adeola, O. and A. J. Cowieson. 2011. Opportunities and challenges in using exogenous enzymes to improve non-ruminant animal production. J. Anim. Sci. 89 : 3189-3218.

Adeola, O., C. M. Nyachoti and D. Ragland. 2007. Energy and nutrient utilization responses of ducks to enzyme supplementation of soybean meal and wheat. Can. J. Anim. Sci. 87 : 199-205.

Adeola, O., D. J. Shafer and C. M. Nyachoti. 2008. Nutrient and energy
utilization in enzyme-supplemented starter and grower diets for White
Pekin ducks. Poultry Sci. 87 : 255-263.

Adeola, O. and M. R. Bedford. 2004. Exogenous dietary xylanase ameliorates viscosity-induced anti-nutritional effects in wheat-based diets for White Pekin ducks (Anas platyrinchos domesticus). Br. J. Nutr. 92 : 87-94.

Almirall, M., M. Francesch, A. M. Perez-Vendrell, J. Brufau, and E. Estere-Garcia. 1995. The difference in intestinal viscosity produced by barley and β-glucanase alter digesta enzyme activities and ileal nutrient digestibilities more in broiler chicks than in in cocks. J. Nutr. 125 : 947-955.

Ao, X., T. X. Zhou, Q. W. Meng, J. H. Lee, H. D. Jang, J. H. Cho and I. H. Kim. 2011. Effects of a carbohydrase cocktail supplementation on the growth
performance, nutrient digestibility, blood profiles and meat quality in
finishing pigs fed palm kernel meal. Livest. Sci. 137 (1) : 238-243.

AOAC. 1990. Official Method of Analysis. 15th ed. Assoc. Offic. Anal. Chem., Arlington, VA.

Applegate, T. J., D. M. Karcher and M. S. Lilburn. 2005. Comparative
development of the small intestine in the turkey poult and pekin duckling.
Poultry Sci. 84 : 426-431.

Bach Knudsen, K. E. 2001. The nutritional significance of ‘dietary fibre’ analysis. Anim. Feed Sci. Technol. 90 : 3-20.

Bedford, M. R. 1995. Mechanism of action and potential environmental benefits from the use of feed enzyme. Anim. Feed Sci. Technol. 53 : 145-155.

Bedford, M. R. and H. L. Classen. 1992. Reduction of intestinal viscosity through manipulation of dietary rye and pentosanase concentrations is effected through changes in carbohydrate composition of the intestinal aqueous phase and results in improved growth rate and food conversion efficiency of broiler chicks. J. Nutr. 122 : 560-569.

Bergmans, M. E. F., G. Beldman, H. Gruppen and A. G. J. Voragen. 1996.
Optimisation of the selective extraction of (glucurono) arabinoxylans
from wheat bran: use of barium and calcium hydroxide solution at
elevated temperatures. J. Cereal Sci. 23 : 235-245.

Bjerknes, M. 1986. A test of the stochastic theory of stem cell differentiation.
Biophys. J. 49 : 1223-1227.

Boguhn, J. and M. Rodehutscord. 2010. Effects of nonstarch polysaccharide-
hydrolyzing enzymes on performance and amino acid digestibility in turkeys. Poultry Sci. 89 : 505-513.

Bolton, W. 1955. The digestibility of the carbohydrate complex by birds of different ages. J. Agric. Sci. 46 (4) : 420-424.

Brunsgaard, G. 1998. Weaning and the weaning diet influence the villous height
and crypt depth in the small intestine of pigs and alter the concentrations
of short chain fatty acids in the large intestine and blood. J. Nutr. 128 :
947-953.

Brunsgaard, G. and B. O. Eggum. 1995. Small intestinal tissue structure and proliferation as influenced by adaptation period and indigestible polysaccharides. Comp. Biochem. Physiol. 112 : 365-377.

Brunsgaard, G., K. E. Bach Knudsen, and B. O. Eggum. 1995. The influence of period of adaptation on the digestibility of diets containing different types of indigestible polysaccharides in rats. Br. J. Nutr. 74 : 833-848.

Caffall, K. H. and D. Mohnen. 2009. The structure, function, and biosyn-thesis of plant cell wall pectic polysaccharides. Carbohydr. Res. 344 : 1879-1900.

Căpriţă, R., A. Căpriţă and C. Julean. 2010. Biochemical aspects of non-starch polysaccharides. Anim. Sci. Biotechnol. 43(1) : 368-374.

Carré, B. and B. Leclercq. 1985. Digestion of polysaccharides, protein and lipids by adult cockerels fed on diets containing a pectic cell-wall material from white lupin (Lupinus albus L.) cotyledon. Br. J. Nutr. 54 : 669-680.

Carré, B., J. Gomez and A. M. Chagneau. 1995. Contribution of oligosaccharide and polysaccharide digestion, and excreta losses of lactic acid and short chain fatty acids, to dietary metabolisable energy values in broiler chickens and adult cockerels. Br. Poult. Sci. 36 : 611-629.

Chauynarong, N., P. Iji, S. Isariyodom, M. Choct and L. Mikkelsen. 2007. Change in body weight and ovary weight of pre-lay pullets fed maize-soy based diet supplemented with an exogenous microbial enzyme. Kasetsart J. 41:49-55.

Cheng, H., C. McCulloch and M. Bjerknes. 1986a. Effects of 30% intestinal resection on whole population cell kinetics of mouse intestinal epithelium. Anat. Rec. 215 : 35-41.

Cheng, H., M. Bjerknes, J. Amar and G. Gardiner. 1986b. Crypt production in
normal and diseased human colonic epithelium. Anat. Rec. 216 : 44-48.

Chesson, A. 1987. Supplementary enzymes to improve the utilization of pig and poultry diet. In: W. Haresign and D. J. A. Cole (Ed). Recent Advances in Animal Nutrition pp 77-89. Butterworths, London, UK.

Chesson, A. 2001. Non-starch polysaccharide degrading enzymes in poultry
diets: Influence of ingredients on the selection of activities. World’s Poult.
Sci. J. 57 : 251-263.

Chiou, P. W. S., T. W. Lu, J. C. Hsu and B. Yu. 1996. Effect of different sources of fiber on the intestinal morphology of domestic geese. Asian Australas. J. Anim. Sci. 4 : 539-550.

Choct, M. 1997. Feed non-starch polysaccharides: chemical structures and nutritional significance. Feed Milling Int. pp. 13-26.

Choct, M. 2006. Enzyme for the feed industry : past, present and future. World's Poult. Sci. 62 : 5-15.

Choct, M. and G. Annison . 1992. Anti-nutritive effect of wheat pentosans in broiler chickens : Role of viscosity and gut microflora. Br. Poult. Sci. 33 (4) : 821-834.

Choct, M. and A. Kocher. 2000. Non-starch carbohydrates: digestion and its secondary effects in monogastrics. Proc. Nutr. Soc. Aust. 24 : 31-38.

Cosgrove, D. J. 2005. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6 :850-861.

Cowieson, A. J. and V. Ravindran. 2008a. Effect of exogenous enzymes in
maize-based diets varying in nutrient density for young broilers: Growth
performance and digestibility of energy, minerals and amino acids. Br.
Poult. Sci. 49 :37-44.

Cowieson, A. J. and V. Ravindran. 2008b. Sensitivity of broiler starters to three
doses of an enzyme cocktail in maize-based diets. Br. Poult. Sci. 49 :
340-346.

Coz-Rakovac, R., I. Strunjak-perovic, M. Hacmanjek, P. N. Topic, Z. Lipej and B. Sostaric. 2005. Blood chemistry and histological properties of wild and cultured sea bass (Dicentrarchus labrax) in the north Adriatic Sea. Vet. Res. Commun. 29 : 677-687.

Cummings, J. H. and H. N. Englyst. 1995. Gastrointestinal effects of food carbohydrate. Am. J. Clin. Nutr. 61 : 938S-945S.

Dänicke, S., G. Dusel, H. Jeroch and H. Kluge. 1999. Factors affecting efficiency of NSP-degrading enzymes in rations. Agribiol. Res. 52 : 1-24.

Dänicke, S., W. Böttcher, H. Jeroch, J. Thielebein and O. Simon. 2000.
Replacement of soybean oil with tallow in rye-based diets without
xylanase increases protein synthesis in small intestine of broilers. J. Nutr.
130 : 827-834.

Dänicke, S., W. Vahjen, O. Simon and H. Jeroch. 1999. Effects of dietary fat
type and xylanase supplementation to rye-based broiler diets on selected bacterial groups adhering to the intestinal epithelium. on transit time of feed, and on nutrient digestibility. Poultry Sci. 78 : 1292-1299.

Dean, W. F. 1978. Nutrient requirements of ducks. Proc. 1978. Cornell Nutr. Conf. pp. 132-140.

Edwards, C. A., I. T. Johnson and N. W. Read. 1988. Do viscous polysaccharides slow absorption by inhibiting diffusion on convection ? Eur. J. Clin. Nutr. 42: 306-312.

Engelmann, C. 1961. Ober die Futterwahl des Geflügels - Versuche mit Geschmackszusätzen zu üblichen Futtermischungen. Arch. Geflz. Kleintierk.10 : 165-177.

Englyst, H. N. 1989. Classification and measurements of plant polysaccharides. Anim. Feed Sci. Technol. 23 : 27-42.

Englyst, H. N. and J. H. Cummings. 1987. Resistant starch, a ‘new’ food
component: a classification of starch for nutritional purposes. In Cereals in a European Context, ed. I. D. Martin. pp. 221-233.

Englyst, H. N., M. E. Quigley and G. J. Hudson. 1994. Determination of dietary fibre as non-starch polysaccharides with gas-liquid chro-matographic, high-performance liquid chromatographic or spec-trophotometric measurement of constituent sugars. Analyst 119 : 1497-1509.

Farrell, D. J. and E. A. Martin. 1998. Strategies to improve the nutritive value of rice bran in poultry diets. I. The addition of food enzymes to target the non-starch polysaccharide fraction in diets of chickens and ducks gave no
response. Br. Poult. Sci. 39 : 549-554.

Fuentes-Zaragoza, E., M. J. Riquelme-Navarrete, E. Sánchez-Zapata and J. A. Pérez-Álvarez. 2010. Resistant starch as functional ingredient: A review. Food Res. Int. 43 (4): 931-942.

Gao, F., Y. Jiang, G.H. Zhou and Z. K. Han, 2007. The effects of xylanase supplementation on performance, characteristics of the gastrointestinal
tract, blood parameters and gut microfelora in broilers fed on wheat-based diets. Anim. Feed Sci. Technol 142 : 173-184.

Hampson, D. J. 1986. Alteration in piglet small intestinal structure at weaning. Res. Vet. Sci. 40 : 32-40.

Haralampu, S. G. 2000. Resistant starch-a review of the physical properties and biological impact of RS3. Carbohydr. Polym. 41: 285-292.

Hill, K. J. 1971. The physiology of digestion. in: Physiology and Biochemistry of the Domestic Fowl, Vol. I. eds. Bell, D. J. and Freeman, B. M. New York, pp. 28-32.
Hong, D., H. Burrows and O. Adeola. 2002. Addition of enzyme to starter and grower diets for ducks. Poultry Sci. 81: 1842-1849.

Hsu, J. C., K. Tanaka and S. Ohtani. 1987. Effect of diets with different protein levels and cereals on hepatic lipid accumulation and on the activities of lipogenic-related enzymes in the liver of ducklings. Japan. Poultry Sci. 24 : 94-102.

Hungate, R. E. 1966. The Rumen and its microbes. Academic Press, New York.
Ide, T., M. Horii, K. Kawashima and T. Yamamoto. 1989. Bile acid conjugation and hepatic taurine concentration in rats fed on pectin. Br. J. Nutr. 62: 539-550.

Ikegami, S., F. Tsuchihashi, H. Harada, N. Tsuchihashi, E. Nishide and S.
Kawashima, nnami. 1990. Effect of viscous indigestible polysaccharides on pancreatic-biliary secretion and digestive organs in rats. J. Nutr. 120 (4) : 353-360.

Iji, P. A., A. Saki and D. R. Tivey. 2001. Body and intestinal growth of broiler chicks on a commercial start diet. 1. Intestinal weight and mucosal development. Br. Poult. Sci. 42: 505-513.

Iji, P. A., A. A. Saki, and D. R. Tivey. 2001. Intestinal development and body growth of broiler chicks on diets supplemented with non-starch polysaccharides. Anim. Feed Sci. Technol. 89 : 175-188.

Jamroz, D., A. Wiliczkiewicz, J. Orda, T. Wertelecki and J. Skorupinska. 2002. Aspects of development of digestive activity of intestine in young chickens, ducks and geese. J. Anim. Physiol. Anim. Nutr. 86 : 353-366.

Jamroz, D., K. Eder, A. Wiliczkiewicz and M. Kirchgessner. 1998. Digestibility of NSP-bound sugars in feeding triticale and enzymes to chickens, ducks and geese. J. Anim. Physiol. Anim. Nutr. 79 (3-4) : 113-122.

Jamroz, D., K. Jakobsen, J. Orda, J. Skorupinska and A. Wiliczkiewicz. 2001.
Development of gastrointestinal tract and digestibility of dietary fibre
and amino acids in young chickens, ducks and geese fed diets with
high amounts of barley. Comp. Biochem. and Physiol. Part A 131 : 657-668.

Jamroz, D., K. Jakobsen, K. E. Bach Knudsen, A. Wiliczkiewicz and J. Orda. 2002. Digestibility and energy value of non-starch polysaccharides in young chickens, ducks and geese, fed diets containing high amounts of barley. Comp. Biochem. Physiol. Mol. Integr. Physiol. 131: 657-668.

Jaroni, D., S. E. Scheideler, M. Beck and C. Wyatt. 1999. The effect of dietary wheat middlings and enzyme supplementation. 1. Late egg production efficiency, egg yields, and egg composition in two strains of Leghorn hens. Poultry Sci. 78 : 841-847.

Jin, L., L. P. Reynolds, D. A. Redmer, J. S. Caton and J. D. Crenshaw. 1994.
Effects of dietary fiber on intestinal growth, cell proliferation and morphology in growing pigs. J. Anim. Sci. 72 : 2270-2278.

Johnson, I. T. and J. M. Gee. 1981. Effect of gel-forming gums on the intestinal unstirred layer and sugar transport in vitro. Gut 22 : 398-403.

Johnson, I. T. and J. M. Gee. 1986. Gastrointestinal adaptation in response to soluble non-available polysaccharides in the rat. Br. J. Nutr. 55 : 497-505.

Johnson, I.T., J. M. Gee and R. R. Mahoney. 1984. Effect of dietary supplements of guar gum and cellulose on intestinal cell proliferation, enzyme levels and sugar transport in the rat. Br. J. Nutr. 52 : 477-487.

Józefiak, D., A. Rutkowski and S. A. Martin. 2004. Carbohydrate fermentation in the avian ceca: a review. Anim. Feed Sci. Technol. 113: 1-15.

Jung, H. G. and G. C. Fahey. 1983. Nutritional implications of phenolic monomers and lignin: A review. J. Anim. Sci. 57 : 206-219.

Jung, H. G. and M. S. Allen. 1995. Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants. J. Anim. Sci. 73 : 2774-2790.

Jørgensen, H., X. Q. Zhao, K. E. Bach Knudsen and B. O. Eggum. 1996. The influence of dietary fibre source and level on the development of the gastrointestinal tract, digestibility and energy metabolism in broiler chickens. Br. J. Nutr. 75 : 379-395.

Kay, R. M. 1982. Dietary fiber. J. Lipid Res. 23 : 221-242.

King, D. E., E. K. Asem and O. Adeola. 2000. Ontogenetic development of intestinal digestive functions in White Pekin Ducks. J. Nutr. 130 : 57-62.

Kocher , A. , M. Choct , G. Ross , J. Broz and T. K. Chung . 2003 . Effect of enzyme combinations on apparent metabolizable energy of corn-soybean meal-based diets in broilers. J. Appl. Poult. Res. 12 : 275 -283.

Kritchevsky, D. 1988. Dietary fiber. Annual Rev. Nutr. 8: 301-328.

Langhout, D. J., J. B. Schutte, C. Geerse, A. K. Kies, J. De Jong and M. W. A. Verstegen. 1997. Effects on chick performance and nutrient digestibility on an endo-xylanase added to a wheat- and rye-based diet in relation to fat source. Br. Poult. Sci. 38 : 558-563.

Lineback, D. R. and V. F. Rasper. 1988. Wheat carbohydrates. In: Wheat: Chemistry and Technology, Vol. 1, Y. Pomeranz (ed.), Am. Assoc. Cereal Chem., St. Paul, pp. 277-371

Leslie, M. A., E. T. Moran Jr. and M. R. Bedford. 2007. The effect of phytase and glucanase on the ileal digestible energy of corn and soybean meal fed to broilers. Poultry Sci. 86 : 2350-2357.

MacLeod, M. G., J. Valentine, A. Cowan, A. Wade, L. McNeill and K. Bernard.
2008. Naked oats: Metabolisable energy yield from a range of varieties in
broilers, cockerels and turkeys. Br. Poult.Sci. 49 : 368-377.

Maes, C., and J. A. Delcour. 2001. Alkaline hydrogen peroxide extraction of wheat bran non-starch polysaccharides. J.Cereal Sci.34 : 29-35.

Malkki, Y. and E. Virtanen. 2001. Gastrointestinal effects of oat bran and oat gum -a review. J. Food Sci. Technol. 34 : 337-347.

Martin, E. A. and D. J. Farrell. 1998. Strategies to improve the nutritive value of rice bran in poultry diets. II. Changes in oil digestibility, metabolisable energy and attempts to increase the digestibility of the oil fraction in the diets of chickens and ducklings. Br. Poult. Sci. 39 (4) : 555-559.

Mathlouthi, N., H. Juin and M. Larbier. 2003. Effect of xylanase and β-glucanase supplementation of wheat- or wheat- and barley- based diets on the performance of male turkeys. Br. Poult. Sci. 44 : 291-298.

Mathlouthi, N., J. P. Lalles, P. Lepercq, C. Juste and M. Larbier. 2002. Xylanase and β-glucanase supplementation improve conjugated bile acid fraction in intestinal contents and increase villus size of small intestine wall in broiler chickens fed a rye-based diet. J. Anim. Sci. 80 : 2773-2779.

McDonald, D. E., D. W. Pethick, B. P. Mullan and D. J. Hampson. 2001. Increasing viscosity of the intestinal contents alters small intestinal structure and intestinal growth, and stimulates proliferation of enterotoxigenic Escherichia coli in newly weaned pigs. Br. J. Nutr. 86 : 487-498.

McDougall, G. J., I. M. Morrison, D. Stewart and J. R. Hillman. 1996. Plant cell walls as dietary fibre: range, structure, processing and function. J. Sci. Food Agric. 70 : 133-150.

Mehner, A. 1968. Das Buch vom Huhn. Ulmer Verlag Stuttgart.

Meng, X. and B. A. Slominski. 2005. Nutritive values of corn, soybean meal, canola meal, and peas for broiler chickens as affected by a multicarbohydrase preparation of cell wall degrading enzymes. Poultry Sci. 84 : 1242-1251.

Meng, X., B. A. Slominski, C. M. Nyachoti, L. D. Campbell and W. Guenter. 2005. Degradation of cell wall polysaccharides by combinations of carbohydrase enzymes and their effect on nutrient utilization and broiler chicken performance. Poultry Sci. 84 : 37-47.

Montagne, L., J. R. Pluske and D. J. Hampson. 2003. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim. Feed Sci. Technol.108 : 934-943.

Morgan, A. and M. R. Bedford. 1995. Feed enzymes. Feed Compounder
15 : 25-27.

National academy of sciences. 2001. Deffinitions of fiber. Dietary reference intakes : proposed definition of dietary fiber. National academy press. Washington, D. C. pp. 3-24.

Neukom, H. 1976. Chemistry and properties of the non-starchy polysaccharides (NSP) of wheat flour. Lebensm.Wiss.Technol. 9 (3) : 143-148.

Neukom, H., L. Providoli., H. Gremli. and P. A. Hui. 1967. Recent
inves tigations on wheat flour pentosans. Cereal Chem. 44 : 238-244.

Novak, C. L., H. M. Yakout, and J. Remus. 2007. Response to varying dietary energy and protein with or without enzyme supplementation on growth and performance of Leghorns: Growing period. J. Appl. Poult. Res. 16 : 481-493.

Noy, Y. and D. Sklan. 1995. Digestion and absorption in the young chicks. Poultry Sci. 74 : 366-373.

NRC. 2007. Nutrient requirements of small ruminants. National Academy Press. Washington, DC.
Olukosi, O. A. and O. Adeola. 2008. Whole body nutrient accretion, growth performance and total tract nutrient retention responses of broilers to supplementation of xylanase and phytase individually or in combination in wheat-soybean meal based diets. Jpn. Poultry Sci. 45 : 192-198.

Olukosi, O. A., M. R. Bedford and O. Adeola. 2007a. Xylanase in diets for
growing swine and broiler chicks. Can. J. Anim. Sci. 87 : 227-235.

Olukosi, O. A., A. J. Cowieson, and O. Adeola. 2007b. Age-related influence of a cocktail of xylanase, amylase, and protease or phytase individually or in combination in broilers. Poultry Sci. 86 : 77-86.

Olukosi, O. A., A. J. Cowieson, and O. Adeola. 2008a. Energy utilization and growth performance of broilers receiving diets supplemented with enzymes containing carbohydrase or phytase activity individually or in combination. Br. J. Nutr. 99 : 682-690.

Olukosi, O. A., A. J. Cowieson, and O. Adeola. 2008b. Influence of enzyme supplementation of maize-soyabean meal diets on carcase composition, whole-body nutrient accretion and total tract nutrient retention of broilers. Br. Poult. Sci. 49 : 436-445.

Olukosi, O. A., A. J. Cowieson and O. Adeola. 2010. Broiler responses to supplementation of phytase and admixture of carbohydrases and protease in maize-soyabean meal diets with or without maize Distillers' Dried Grain with Solubles. Br. Poult. Sci. 51 : 434-43.

Palander, S., M. Nasi and S. Jarvinen. 2005. Effect of age of growing turkeys on digesta viscosity and nutrient digestibility of maize, wheat, barley and oats fed as such or with enzyme supplementation. Arch. Anim. Nutr. 59 : 191-203.

Parsaie, S., F. Shariatmadari, M. J. Zamiri and K. Khajeh. 2007. Influence of
wheat-based diets supplemented with xylanas, bile acid and antibiotics on performance, digestive tract measurements and gut morphology of broilers compared with a maize-based diet. Br. Poult. Sci. 48 : 594-600.

Pell, J. D., J. M. Gee, G. M. Wortley and I. T. Johnson. 1992. Dietary corn oil and guar gum stimulate intestinal crypt cell proliferation in rats by independent but potentially synergistic mechanisms. J. Nutr. 122 : 2447-2456.

Pluske, J. R., D. J. Hampson and I. H. Williams. 1997. Factors influencing the structure and function of the small intestine in the weaned pig: a review. Livest. Prod. Sci. 51: 215-236.

Ralet, M. C., Thibault, J.F., Della Valle, G., 1990. Influence of extrusion
cooking on the physicochemical properties of wheat bran. J. Cereal Sci. 11 : 249-259.

Rebole, A., L. T. Ortiz, M. L. Rodriguez, C. Alzueta, J. Trevino and S. Velasco.
2010. Effects of inulin and enzyme complex, individually or in
combination, on growth performance, intestinal microflora, cecal
fermentation characteristics, and jejunal histomorphology in broiler chickens fed a wheat- and barley-based diet. Poultry Sci. 89 : 276-286.

Roberfroid, M. 1993. Dietary fibre, inulin and oligofructose: a review
comparing their physiological effects. CRC Crit. Rev. Food Sci. Technol. 33 : 103-148.

Roberts, J. R. and M. Choct. 2006. Effects of commercial enzyme preparations on egg and eggshell quality in laying hens. Br. Poult. Sci. 47 : 501-510.

Robertson, J. A. and M. A. Eastwood. 1981. An examination of factors which may affect the water holding capacity of dietary fibre. Br. J. Nutr. 45 : 83-88.

Rose, J. K. C. and A. B. Bennett. 1999. Cooperative disassembly of the cel-lulose-xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends Plant Sci. 4 : 176-183.

Rutherfurd, S. M., T. K. Chung and P. J. Moughan. 2007. The effect of a commercial enzyme preparation on apparent metabolizable energy, the true ileal amino acid digestibility, and endogenous ileal lysine losses in broiler chickens. Poultry Sci. 86 : 665-672.

SAS Institute. 1998. SAS User's Guide : Statistics. Version 7 ed. SAS Inst. Inc., Cary, NC.

Sasaki, T. 2004. Effect of water-soluble and insoluble non-starch polysaccharides isolated from wheat flour on the rheological properties of wheat starch gel. Carbohydrate Polymers 57 (4) :451-458.

Satchithanandam, S., S. Jahangeer, M. M. Cassidy, M. K. Floor, R. J. Calvert and O. Alabaster. 1989. Quantitative effects of wheat bran feeding on rat intestinal mucin. FASEB. J. 3 (4) : 4877 (abstract).

Satchithanandam, S., M. Vargofcak-apker, R. J. Calvert, A. R. Leeds and M. M. Cassidy.1990. Alteration of gastrointestinal mucin by fiber feeding in rats. J. Nutr. 120 : 1179-1184

Sauveur, B. and H. de Carvillie. 1985. Recent studies on the management of Muscovy breeding ducks in France. in: Duck Production. eds. Farell, D. J. and Stapleton, P. The University of New England, Armidale, Australia.

Schneeman, B. O. 1982. Pancreatic and digestive function. In : Vahouny G. V. and D. Kritchersky. (Ed.) Dietary fiber in health and disease. pp. 73-83. Plenum Press, New York.

Schneeman,B. O. 1987. Soluble vs insoluble fiber - different physiological responses. Food Technol. 41: 81-82.

Scott, M. L., and W. F. Dean. 1991. Nutrition and Management of Ducks. M. L. Scott, Ithaca, NY.

Scott , T. A. 1996 . Assessment of energy levels in feedstuffs for poultry.
Anim. Feed Sci. Technol. 62 : 15 -19 .

Selvendran, R. R. and J. A. Robertson. 1990. The chemistry of dietary fibre-An holistic view of the cell wall matrix. In : D.A.T. Southgate, K. Waldron, I.T. Johnson, G. R. Fenwick (Eds.), Dietary fibre: Chemical and biological aspects, Royal Society of Chemistry, Cambridge, pp. 27-43.

Sieo, C. C., N. Abdullah, W. S. Tan and Y. W. Ho. 2005. Influence of beta-glucanase-producing Lactobacillus strains on intestinal characteristics and feed passage rate of broiler chickens. Poultry Sci. 84 (5) : 734-741.

Sinlae M and M. Choct. 2000. Xylanase supplementation affects the caecal of broilers. Proc. Aust. Poult. Sci. Symp. 12: 209.

Simon, O. 1989. Metabolism of proteins and amino acids, in: Bock, H. D. Eggum, B. O. Low, A. G. Simon, O. and Erowska, T. (Eds) Protein Metabolism and Farm Animals. Evaluation, Digestion, Absorption and Metabolism, pp. 271-336 (Berlin, Germany, Oxford University Press and VEB Dt Landwirtschaftsverlag).

Smits, C. H. M. 1996. Viscosity of dietary fibre in relation to lipid
digestibility in broiler chickens. Ph. D. Thesis. Agricultural University Wageningen, The Netherlands.

Smits, C. H. M. and G. Annison. 1996. Non-starch plant polysaccharides in broiler nutrition-towards a physiologically valid approach to their determination. World's Poult. Sci. J. 52 : 203-221.

Story, J. A. and D. Kritchevsky. 1976. Comparison of the binding of various bile acids and bile salts in vitro by several types of fiber. J. Nutr. 106 : 1292-1294.

Tahir, M., F. Saleh, A. Ohtsuka and K. Hayashi. 2008. An effective
combination of carbohydrases that enables reduction of dietary protein in broilers: Importance of hemicellulase. Poultry Sci. 87 : 713-718.

Tahir, M., F. Saleh, M. Amjed, A. Ohtsuka and K. Hayashi. 2005. Synergistic effect of cellulase and hemicellulase on nutrient utilization and performance in broilers fed a corn-soybean meal diet. Anim. Sci. J. 76 : 559-565.

Thebaudin, J. Y., L. M. Harrington and C. M. Bourgeois. 1997. Dietary fibres: Nutritional and technological interest. Trends in Food Sci. Technol. 8: 41-48.
Timmler, R. and M. Rodehutscord. 2001. Efficiency of different xylanase preparations in diets for pekin ducks. Arch. Anim. Nutr. 55 : 315-332.

Titgemeyer, E. C., M. G. Cameron, L. D. Bourquin and G. C. Fahey. 1991. Digestion of cell wall components by dairy heifers fed diets based on alfalfa and chemically treated oat hulls. J. Dairy Sci. 74 : 1026-1037.

Troche, C., X. Sun, A. P. McElroy, J. Remus and C. L. Novak. 2007. Supplementation of Avizyme 1502 to corn-soybean meal wheat diets fed to turkey tom poults: The first fifty-six days of age. Poultry Sci. 86 : 496-502.

Trowell, H., D. A. Southgate, T. M. Wolever, A. R. Leeds, M. A. Gassull and D. J. Jenkins. 1976. Letter: dietary fibre refined. Lancet 1: 967.

Uni, Z., Y. Noy and D. Sklan. 1995. Development of the small intestine in heavy and light strain chicks before and after hatching. Br. Poult. Sci. 36 : 63-71.

Vahouny, G. V., R. Tombes , M. M. Cassidy, D. Kritchevsky and, L. L. Gallo. 1980. Dietary fibers: V. Binding of bile salts, phospholipids and cholesterol from mixed micelles by bile acid sequestrants and dietary fibers. Lipids 15 : 1012-1018.

Vahouny, G. V., R. Tombes , M. M. Cassidy, D. Kritchevsky and, L. L. Gallo. 1981. Dietary fibres. VI: Binding of fatty acids and monolein from mixed micelles containing bile salts and lecithin. Proc. Soc. Exp. Biol. Med. 166 (1) : 12-16.

van der Klis, J. D., A. Van Voorst and C. van Cruyningen. 1993. Effect of a pentosans soluble polysaccharide (carboxy methyl cellulose) on the physico-chemical conditions in the gastrointestinal tract of broilers. Br. Poult. Sci. 34 : 971-983.

Van Soest, P. J. and R. H. Wine. 1967. Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell wall constituents, J. A. O. A. C. 50 : 50-55.

Wang, J. P., S. M. Hong, L. Yan, J. S. Yoo, J. H. Lee, H. D. Jang, H. J. Kim and I. H. Kim. 2009. Effects of single or carbohydrases cocktail in low - nutrient - density diets on growth performance, nutrient digestibility, blood characteristics, and carcass traits in growing-finishing pigs. Livest. Sci. 126 (1) : 215-220.

Wang, Z. R., S. Y. Qiao, W. Q. Lu and D. F. Li. 2005. Effects of enzyme supplementation on performance, nutrient digestibility, gastrointestinal morphology, and volatile fatty acid profiles in the hindgut of broilers fed wheat-based diets. Poultry Sci. 84 : 875-881.

Yang, Y., P. A. Iji, A. Kocher, L. L. Mikkelsen and M. Choct. 2009. Effects of dietary mannanoligosaccharide on growth performance, nutrient digestibility and gut development of broilers given different cereal-based diets. Anim. Physiol. Anim. Nutr. 92 (6) : 650-659.

Yang, Z. B., W. R. Yang, S. Z. Jiang, G. G. Zhang, Q. Q. Zhang and K. C. Siow. 2010. Effects of a thermo tolerant multi-enzyme product on nutrient and energy utilization of broilers fed mash or crumbled corn-soybean meal diets. J. Appl. Poult. Res. 19 : 38-45.

Yasar, S. and J. M. Forbes. 1999. Performance and gastro-intestinal response of broiler chickens fed on cereal grain-based foods soaked in water. Br. Poult. Sci. 40 : 65-76.

Yasar, S. and J. M. Forbes. 2000. Enzyme supplementation of dry and wet wheat-based feeds for broiler chickens: performance and gut responses. Br. J. Nutr. 84 : 297-307.

Yin, Y-L., S. K. Baidoo, H. Schulze and P. H. Simmins. 2001. Effects of supplementing diets containing hull-less barley varieties having different levels of non-starch polysaccharides with β-glucanase and xylanase on the physiological status of the gastrointestinal tract and nutrient digestibility
of weaned pigs. Livest. Prod. Sci. 71 : 97-107.

Yu, B, C. C. Tsai, J. C. Hsu and P. W. S. Chiou. 1998. Effect of different sources of dietary fibre on growth performance, the intestinal morphology and caecal carbohydrases of the domestic geese. Br. Poult. Sci. 39 : 560-567.

Yu , B. , S. T. Wu , C. C. Liu , R. Gauthier and P. W. S. Chiou . 2007. Effects of enzyme inclusion in a maize-soybean diet on broiler performance. Anim. Feed Sci. Technol. 134 : 283-294.

Yu, B. and T. K. Chung. 2004. Effects of multiple-enzyme mixtures on growth performance of broilers fed corn-soymeal diets. J. Appl. Poult. Res. 13 : 178-182.

Zhao, F., S. S. Hou, H. F. Zhang and Z. Y. Zhang. 2007. Effects of dietary metabolizable energy and crude protein content on the activities of digestive enzymes in jejunal fluid of Peking ducks.Poultry Sci. 86 : 1690-1695.

Zhou, Y., Z. Jiang, D. Lv and T. Wang. 2009. Improved energy-utilizing efficiency by enzyme preparation supplement in broiler diets with different metabolizable energy levels. Poultry Sci. 88 : 316-322.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top