跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/08/04 08:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:簡嘉維
研究生(外文):Jia- Wei Jian
論文名稱:植物生長調節劑對報歲蘭生長與發育之影響
論文名稱(外文):Effects of plant growth regulator on growth and development in Cymbidium sincence
指導教授:黃秀真黃秀真引用關係
指導教授(外文):Shiou- Jen Huang
口試委員:鄔家琪徐國彰
口試委員(外文):Chia-Chyi WuKuo-Chang Hsu
口試日期:2012-07-03
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:園藝學系碩士班
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:112
中文關鍵詞:報歲蘭矮化劑細胞分裂素甲殼素
外文關鍵詞:CymbidiumPaclobutrazolPlant growth retardantCytokininChitosan
相關次數:
  • 被引用被引用:1
  • 點閱點閱:530
  • 評分評分:
  • 下載下載:80
  • 收藏至我的研究室書目清單書目收藏:0
本試驗以報歲蘭‘瑞華’、‘金華山’及‘太平洋’為試驗材料,探討不同濃度 (0、25、50、100、200 和 400 ppm) Paclobutrazol (PBZ)、(0、500、1000 和 2000 ppm) 6-BA 和 (1 mL.L-1 及 2 mL.L-1) 甲殼素在不同處理方式下對報歲蘭生長及發育之影響。報歲蘭‘瑞華’在不同濃度 PBZ 植株浸漬處理有較顯著差異,濃度愈高伸長量愈少。報歲蘭‘金華山’各處理伸長量差異不顯著。報歲蘭‘瑞華’利用 PBZ 介質灌注及葉面噴施處理均明顯較對照組佳,濃度愈高伸長量愈少,介質灌注處理較葉面噴施有更好的抑制效果,伸長量較少,其中以 400ppm PBZ 灌注三次具有最小伸長量 0.75cm。而報歲蘭‘金華山’灌注處理及葉面噴施均以 400 ppm PBZ 伸長量最少,差異最顯著。葉片伸長量隨著 PBZ 介質灌注處理濃度增加而減少,而報歲蘭 ‘太平洋’ 仍以 400 ppm PBZ 對葉長的控制較佳,處理 105 天後葉片總伸長量與較對照組相比,葉片總伸長量減少了 70 %。葉片噴施 PBZ 處理,在 50、100 和 200 ppm 的3種濃度與較對照組相比,對葉長均無顯著的影響。而葉面噴施 400 ppm 於處理 49 天後,可減少葉片伸長量約 26 %。報歲蘭‘太平洋’處理不同濃度 PBZ,結果顯示花梗長度隨著濃度的增加而降低的趨勢,花朵直徑及花色濃度間沒有明顯的不同,但 400 ppm PBZ 高濃度處理會提高花朵直徑。
進行報歲蘭光合作用週年性的調查發現光合作用會隨著葉溫的提高而增加的現象,PBZ 施用後有增加光合作用,處理 20 週後處理組相較於對照組有較高的淨光合作用率,以 200 ppm PBZ 處理植株提高效果最佳。
施用 6-BA 對於母球假球莖寬度和厚度沒有差異,但子球假球莖在 6-BA 澆灌處理後,假球莖寬度會較小,厚度則沒有差異。 6-BA 對於芽體數增加之影響,以 500 ppm 6-BA 澆灌處理最多,對根系卻不會產生任何影響,其次為 1000 ppm 6-BA 葉面噴灑,與對照組相比 (每盆 1.2 個芽) 分別增加 2.3 和 1.8 個芽,而其他不同處理也會提高芽數 (每盆 2 ~ 2.8 個芽)。另外 6-BA 500 ppm 澆灌處理會促進母球新芽的萌發 (每球平均 0.8個芽),而對照組及葉面噴灑卻沒有此現象。
PBZ 對芽體萌發會有抑制的現象及降低植株的抗病性,結果顯示報歲蘭‘金華山’以 100 ppm PBZ、500 ppm 6-BA 及 2 mL.L-1甲殼素,報歲蘭‘太平洋’以 50 ppm PBZ、500 ppm 6-BA 及 2 mL.L-1 甲殼素在萌芽前處理會有最好的效果及漂亮的葉藝,建議甲殼素必須每星期持續的施用才具有防治病害的效果。
Cymbidium science ‘Ruihua’,‘Gold Huashan’ and ‘Pacific Ocean’ was used in this study. The objective is to investigate the effects of different concentration of Paclobutrazol (PBZ) (0、25, 50, 100, 200 and 400 ppm)、6-BA (0, 500, 1000 and 2000 ppm) and chitosan (1 mL.L-1 and 2 mL.L-1), and plants were soaked, soil drench and foliar application of different treatments on plant growth and development. Cymbidium sicience 'Ruihua' applying different concentrations of soak treatments, plant had the most significant difference, the higher concentration, the less elongation, but there was not a significant response for Cymbidium sicience ‘Gold Huashan’. PBZ drench had a greater retarding activity on leaf elongation than spray. A 400 ppm PBZ drench three times resulted in the shortest plants , which had the lowest leaf elongation count(0.75 cm). It was apparent that 400 ppm drench and spray treatments with PBZ decreased leaf elongation of Cymbidium sicience ‘Gold Huashan’ over the control , it was also observed that Cymbidium sicience ‘Pacific Ocean’ plants leaf elongation decreased with increasing concentration of PBZ drench, plant drenched with PBZ 400 ppm after 105 days, leaf elongation was inhibited 70% than control, and plant were sprayed 400ppm PBZ after 49 days reduced leaf elongation only 26%, but there was no significant difference between control and sprayed with PBZ 50 ,100 and 200 ppm . Flower stalk was significantly decreased with increased dose of PBZ , On the contrary, increased flower diameter only at the highest drench concentration, but there was no difference at flower diameter and color.
It was investigated the photosynthesis enhanced was accompanied by higher leaf temperature all year through, and the net photosynthetic rate was greatest at 200ppmPBZ. During the first 20weeks after treatment, PBZ acceleration of the net photosynthetic rate than those untreated plants, but decreased the activities of photosynthesis as well as control in November.
Results showed 6-BA applied to the plants, there were no significant effects between mother’s pseudobulbs thickness and width, but the application of 6-BA led to a decreasing of shoot’s pseudobulbs width and thickness, especially when applied as a soil drench. Drench application of 6-BA at dose of 500 ppm resulted in significant increasing in the number of lateral shoots and plants had no visual differences in the structure of roots , plants were sprayed 1000 ppm PBZ had less lateral shoots than former. Plants treated with 500 ppm and 1000 ppm of BA were significant increasing the number of lateral shoots(2.3 and 1.8 shoots/pot) than control(1.2 shoots/pot), it was also observed from the other different treatments(1.2 shoots/pot). Additionally, plant drenched with 500 ppm 6-BA was more effective inducing on the mother’s pseudobulb latent buds (0.8 buds of per pseudobulb), but no effects of control and spray applications .
Cymbidium sicience ‘Gold Huashan’ application of PBZ could cause suppressing latent buds inducing and led plants to a poor resistance from plant dieses , Combing 100 ppmPBZ, 500 ppm 6-BA and 2 mL.L-1 chitosan had been effective in promoting the resistance from diseases, and Cymbidium sicience ‘Pacific Ocean’ was applied 50 ppm PBZ, 500 ppm 6-BA and 2 mL.L-1 chitosan before latent buds emergence, the treatments have high net photosynthesis and best foliar variegation, suggesting that weekly application chitosan continued was most effective at pathogens control.

摘要 i
Summary iii
表目錄 v
圖目錄 vi
壹、 前言 1
貳、 前人研究
一、 分類及生長習性 3
二、 矮化劑作用機制 7
三、 矮化劑種類 8
四、Paclobutrazol 10
五、細胞分裂素對植物生長之影響 16
六、幾丁質 (chitin) 與幾丁聚醣 (chitosan) 18
參、 材料與方法
一、 不同濃度 Paclobutrazol 對報歲蘭生長之影響 21
二、 不同濃度 6-BA 對報歲蘭生長之影響 23
三、 萌芽前處理 PBZ 及 6-BA 對報歲蘭生長之影響 23
四、 甲殼素對芽前處理植株生長之影響 24
五、 PBZ 對葉藝變化之影響 25
六、 光合作用測定 26
七、 調查項目 28
八、 試驗設計與統計分析 28
肆、 結果
一、 不同濃度 Paclobutrazol 對報歲蘭生長之影響 29
二、 不同濃度 6-BA 對報歲蘭生長之影響 37
三、 萌芽前處理 PBZ 及 6-BA 對報歲蘭生長之影響 38
四、 甲殼素對芽前處理植株生長之影響 42
五、PBZ 對葉藝變化之影響 43
伍、 討論
一、 不同濃度 Paclobutrazol 對報歲蘭生長之影響 45
二、 不同濃度 6-BA 對報歲蘭生長之影響 47
三、 萌芽前處理 PBZ 及 6-BA 對報歲蘭生長之影響 47
四、 甲殼素對芽前處理植株生長之影響 49
五、PBZ 對葉藝變化之影響 50
陸、 參考文獻 106

尤進欽、郭純德、朱玉、戴柏宣。 2005。 Paclobutrazol 對國蘭金烏與金華山生育及開花之影響。 宜蘭大學生物資源學刊 第 1 期。P. 17-24。
朱玉、趙秀淓。 2000。矮化劑種類和濃度對彩葉芋葉柄長度之影響。 中國園藝。 P. 267-276。
吳中軍。 2009。6-BA 和 NAA 對誘導彩葉草芽和生根的影響。 北方園藝。 P. 198-200。
李寶英。2005。殼聚醣制劑控制蔬菜土傳病害的研究。 中國農學通報。 第 1 期。 P. 275-277。
林文源。 1995。 幾丁聚醣抗菌作用之研究。 國立台灣大學食品科技研究所博士論文。
林金和。1988。植物生長調節劑。植物生長調節劑在園藝作物之應用研討會專集。P. 67–73。台中區農業改良場編印。
林嘉興、張林仁、林信山。植物生長調節劑在枇杷栽培上之應用。植物生長調節劑在園藝作物之應用研討會專集。P. 291–303。台中區農業改良場編印。
林贊標。 1977。 台灣蘭科植物 第二冊。 會風公司。
邰蕉。2006。 台灣香蕉紀事。高雄農訊。 第 98 期。
周鳳珏、許鴻源、白坤棟、施力軍。PP333對木薯生長、光合和蒸騰的影響。農業生物技術科學。第20卷。第一期。P. 17-20。
洪惠娟、魏芳明、郭璦榛。 2010。 國蘭產業作業手冊:產業發展與產銷現況。 行政院農業委員會臺中區農業改良場。 P. 3-11。
胡醒潔。 1982。 國蘭、洋蘭。 久久出版社。 P. 82-83。
徐福壽。1992。植物生長調節劑使用手冊。上海科學技術出版社。P. 55-56。
高景輝。1988。植物荷爾蒙-細胞分裂素與離層酸。植物生長調節劑在園藝作物之應用研討會專集。P. 43–61。台中區農業改良場編印。
張正。 2010。 國蘭產業作業手冊:國蘭的分類、形態與品系。 行政院農業委員會臺中區農業改良場。 P. 12-24。
張豐榮。 1997。 國蘭栽培入門。 雷鼓出版社。 P. 102-103。
許永昌。 1980。 台灣藝蘭精華 園藝叢書6。 榮文出版社。 P. 15-57。
陳裕星、張莉欣。 2006。 蕙蘭栽培管理手冊:蕙蘭屬植物形態、種原分類及生育特性。 行政院農業委員會動植物防疫檢疫局。 P. 12-39。
黃秀真、黎仲軒、蘇暐婷、簡嘉維。2009。利用矮化劑處理產生高品質的銀柳盆栽。國立宜蘭大學 農業推廣季刊 49。
黃敏展。1988。矮化劑在花卉上之應用。植物生長調節劑在園藝作物之應用研討會專集。 P. 141–159。台中區農業改良場編印。
黃敏展。2002。亞熱帶花卉學總論。國立中興大學 園藝系。P. 329-340。
楊玲玉、孟祥紅、劉成聖、田世平。 2009。 殼聚醣的抗菌性及其對果實病害的防治研究進展。 中國農業科學。 第 2 期。 P. 626-635。
蔡宜峰、蔡東明、洪惠娟。 國蘭產業作業手冊:田間管理作業-栽培管理。 行政院農業委員會臺中區農業改良場。 P. 55-65。
鄭疏影、潘遠智、孫振元。2007。植物生長調節劑對大花蕙蘭分蘗及生長發育的影響。北方園藝。P. 85-87。
謝東鋒、畢陽、邓建軍、何紹凱、呂生峰。 2008。採前殼聚醣對厚皮甜瓜果實潛伏侵染 及其採後主要病害的控制。 甘肅農學大學。 第 2 期。 P. 96-99。
韓德元。1997。植物生長調節劑-原理與運用。北京科學技術出版社。P. 182-186。
魏芳明。 1999。 台灣地區國蘭產業概況與展望。 高雄區農業專訊 第 27 期。
羅英妃。2006。蕙蘭栽培管理手冊。行政院農業委員會動植物防疫檢疫局編印。P. 54。
Aalami, M., A. Tehranifar, Gh. Davarinejad, and Y. Selahvarzie. 2012. Effect of Hydrogel, Paclobutrazol and Irrigation Intervals on Qualitative Characteristics of Turf grass (Lolium perenne cv. Barbal) in Mashhad Climate. J. Hort. Sci. Vol. 1390, No. 3 (25).
Abdelgadir, H. A., S. D. Johnson and J. V. Staden. 2009. Promoting branching of a potential biofuel crop Jatropha curcas L. by foliar application of plant growth regulators. Plant Growth Regul. 58: 287–295.
Badawy, M. E. I., and E. I. Rabea. 2009. Potential of the biopolymer chitosan with different molecularweights to control postharvest gray mold of tomato fruit. Postharvest Biol. Tech. 51: 110−117.
Banon, S., J. Miralles, A. Navarro, and M. J. Sanchez-Blanco. 2009. Influence of paclobutrazol and substrate on daily evapotranspiration of potted geranium. Scientia Horticulturae 122: 572–578.
Beasley, J. S., and B. E. Branham. 2007. Trinexapac-ethyl and paclobutrazol Affect Kenthucky Bluegrass Single-Leaf Carbon Exchange Rates and Plant Growth. Published in Crop Sci. 47: 132-138.
Belakbir, A. 1998. Yield and fruit quality of pepper (Capsicum annum L) in response to bioregulators. HortScience 33: 85–87.
Berova, M., and Z. Zlatev. 2000. Physiological response and yield of paclobutrazol treated tomato plants (Lycopersicon esculentum Mill.). Plant Growth Regulation 30: 117–123.
Cathey, H. M. and H. A. Borthwick. 1964. Significance of dark reversion of phytochrome in flowering of Chrysanthemum morifolium . Bot. Gaz. 125: 232-236.
Chang, Y. S. and C. Y. Cheng. 1995. Effect of plant growth regulators on growth and flower for­mation of passionfruit. J Chinese Soc. Hort. Sci. 41: 251-260. [in Chinese with English sum­mary].
Chen, C. M., J. R. Ertl, S. M. Leisner, and C. C. Chang. 1985. Localization of Cytokinin Biosynthetic Sites in Pea Plants and Carrot Roots. Plant Physiol. 78: 510-513.
Chen, X. G., C. Y. Shi., Z. L. Wang, L. M. Zhang, and X. D. Zhang. 2012. Effect of Paclobutrazol on Starch Accumulation and Related Enzyme Activity of Storage Root in Edible Sweet Potato cv. Beijing 553. Scientia Agricultura Sinica 45: 192-198.
Chung, Y. C., and C. Y. Chen. 2008. Antibacterial characteristics and activity of acid-soluble chitosan. Bioresource Technol. 99: 2806-2814.
Cline, M. G. 2000. Execution of the auxin replacement apical dominance experiment in temperate woody species. Am. J. Bot. 87: 182–190.
Davies, L. J., I. R. Brooking, J. L. Catley and E.A. Halligan. 1998. Sprouting temperature and growth regulators influence cut flower quality of Sandersonia aurantiaca. Hortscience 33: 1167–1171.
Elfving, D. C. and D. B. Visser. 2007. Improving the efficacy of cytokinin applications for stimulation of lateral branch development in young sweet cherry trees in the orchard. Hortscience 42: 251–256.
Emery, R. J. N., N. E. Longnecker, and C. A. Atkins. 1998. Branch development in Lupinus angustifolius L. II. Relationship with endogenous ABA, IAA and cytokinins in axillary and main stem buds. J. Exp. Bot. 49: 555–562.
Fletcher, R.A., V. Kallidumbil, and P. Steele. 1982. An improved bioassay for cytokinin using cucumber cotyledons. Plant Physiol. 69: 675–677.
Foo, E., S. E. Morris, K. Parmenter, N. Young, H. Wang, A. Jones, C. Rameau, C. G. N. Turnbull and C.A. Beveridge. 2007. Feedback regulation of xylem cytokinin content is conserved in pea and Arabidopsis. Plant Physiol. 143: 1418–1428.
Gent, M. P. N. and R. J. McAvoy. 2000. Plant growth retardants in ornamental horticulture: A critical appraislal. In: Plant growth regulators in agriculture and horticulture: Their role and commercial uses, p. 89–146. ed. A.S. Basra. Food Prod. Press, Binghamton, N.Y.
Hamid, M. M. and R. R. 1997. Effect of different types and concentrations of plant growth retardants on Sturt’s desert pea (Swain­sona formosa). Sci Hort 71: 79-85.
Hwang, I. and J. Sheen. 2001. Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413:383-389.
Jaleel, C. A., P. Manivannan, B. Sankar, A. Kishorekumar, S. Sankari, and R. Panneerselvam. 2007. Paclobutrazol enhances photosynthesis and ajmalicine production in Catharanthus roseus. Process Biochemistry 42:1566–1570.
Keever, G. J. and W. J. Foster. 1989. Response of two florist azalea cultivars to foliar applications of a growth regulators. J. Environ. Hort. 7: 56-59.
Kendra, D. F., and L. A.. Hadwiger. 1984. Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum . Fungal Genetics and Biology 8:276-281.
Khalil, I. A. and H. U. Rahman. 1995. Effect of paclobutrazol on growth, chloroplast pigments and sterol biosynthesis of maize (Zea mays L.). Plant Sci 105: 15-21.
Kumar M. N.V. R. 2000. A review of chitin and chitosan applications. Reactive & Functional Polymers 46:1-27.
Li, Q., M. Deng, J Chen and R. J. Henny. 2009.Effect of light intensity and paclobutrazol on growth and interior performance of Pachira aquatica Aubl. Hortscience 44: 1291-1295.
Matsumoto, T. K. 2006. Gibberellic acid and benzyladenine promote early flowering and vegetative growth of Miltoniopsis orchid hybrids. Hort. Science 41:131-135.
Meijon, M., R. Rodriguez, M.J. Canal, and I.Feito. 2009. improvement of compactness and floral quality in azalea by means of application of plant growth regulators. Scientia Horticulturae 119:169-176.
Misra, A., N. K. Srivastava, R. Kumar, and A. Khan. 2005. Effect of Palcobutrazol (PP333) on Flower Quality and Quantity of Rosa damascene. Communications in Soil Science and Plant Analysis 36: 477–486.
Mok, D. WS. and M. C. Mok. 2001. Cytokinin Metabolism and Action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:89-118.
Navarro, A., M. J. Sanchez-Blanco, and S. Banon. 2007. Influence of paclobutrazol on water consumption and plant performance of Arbutus unedo seedlings. Sci. Hort. 111: 133-139.
Orabi, S. A., S.R. Salman, and M. A. F. Shalab. 2010. Increasing Resistance to Oxidative Damage in Cucumber (Cucumis sativus L.) Plants by Exogenous Application of Salicylic Acid and Paclobutrazol. World Journal of Agricultural Sciences 6 (3): 252-259.
Pan, B. Z. and Z. F. Xu. 2011. Benzyladenine Treatment Significantly Increases the Seed Yield of the Biofuel Plant Jatropha curcas. J Plant Growth Regul 30: 166–174.
Qi, Y.,Y.Wang, and G. Liu. 2009. Effects of Paclobutrazol on Shoot Growth and Leaf Photosynthesis in Shuguang Nectarine. journal of Shandong Forestry Science and Technology :03-016.
Rabea, E. I., M. E.–T. Badawy, C. V. Stevens, G. Smagghe, and W. Steurbaut. 2003. Chitosan as antimicrobial agent:applications and mode of action. Pubilshed by the American chemical society 4:1457-1465.
Rademacher, W. 2000. Growth retardants: Effects on gibberellin biosynthesis and other metabolic pathways. Annu. Rev. Plant Physiol. Plant Mol.Biol. 51: 501–531.
Saengaroon, C.,P. Manochai, S. Ussahatanone, M. Gumpugul, and C. Senanan. 2010. Controlling the canopy of high density planting longan trees (Dimocarpus longanLour.) by pruning and paclobutrazol application. Journal of Agricultural Research and Extension 27(3):1-10.
Sankhla, N., T. D. Davis, A. Upadhyaya, D. Sankhla, R. H. Walser, and B. N. Smith. 1985. Growth and Metabolism of Soybean as Affected by Paclobutrazol. Plant Cell Physiol. 26: 913-921.
Sebastian B., G. Alberto, A. C. Emilio, A. F. Jose, and A. F. Juan. 2002. Growth, development and color response of potted Dianthus caryophyllus cv. Mondriaan to paclobutrazol treatment. Sci. Hort. 1767: 1–7.
Sinniah, U. R., S. Wahyuni, B. S. A. Syahputra and S. Gantait. 2012. A potential retardant for lodging resistance in direct seeded rice (Oryza sativa L.). Canadian Journal of Plant Science 92(1): 13-18.
Su, W. and S. H. Howell. 1992. A Single Genetic Locus, Ckrl, Defines Arabidopsis Mutants in which Root Growth Is Resistant to Low Concentrations of Cytokinin1. Plant Physiol. 99:1569-1574.
Svenson, S. E. 1991. Rooting and lateral shoot elongation of verbena following benzylaminopurine application. Hortscience 26: 391–392.
Tehranifar, A., S. Jamalian, E. Tafazoli, G.H. Davarynejad, and S. Eshghi. 2009. Interaction Effects of Paclobutrazol and Salinity on Photosynthesis and Vegetative Growth of Strawberry Plants. Acta Hort.842:821-824.
Tekalign, T., and P. S. Hammes. 2004. Response of potato grown under non-inductive condition to paclobutrazol: shoot growth, chlorophyll content, net photosynthesis, assimilate partitioning, tuber yield, quality, and dormancy. Plant Growth Regulation 43: 227–236.
Tesgaw, T., S. Hammes, and J. Robbertse. 2005. Paclobutrazol-induced leaf, stem, and root anatomical modifications in potato. HortScience 40(5):1343-1346.
Tworkoski, T. and S. Miller. 2007. Endogenous hormone concentrations and bud-break response to exogenous benzyl adenine in shoots of apple trees with two growth habits grown on three rootstocks . J. Horticult. Sci. Biotechnol. 82: 960–966.
Wilkinson, R. I., and D. Richards. 1988. Influence of paclobutrazol on the growth and flowering of Camellia × Williamsii. HortScience 22: 444-445.
Wilkinson, R. I.,and D. Richards. 1991. Influence of Paclobutrazol on Growth and Flowering of Rhododendron‘Sir Robert Peel’. HortScience 26:3282-284.
Wu, P. H., and D. C. N. Chang. 2012. Cytokinin treatment and flower quality in Phalaenopsis orchids: Comparing N-6-benzyladenine, kinetin and 2-isopentenyl adenine. African Journal of Biotechnology 11:1592-1596.
Yamada, A., S. Naoto, K. Osamu, and A. Tadami. 1993. Induction of Phytoalexin Formation in Suspension-cultured Rice Cells by N-Acetylchitooligosaccharides. Bioscience, biotechnology, and biochemistry 57:405-409.
Yim, K. O., Y. W. Kwon, and D. E. Bayer. 1997. Growth responses and allocation of assimilates of rice seedlings by paclobutrazol and gibberellin treatment. J Plant Growth Regul 16(1): 35-41.
Yoshida, S., D. A. Forno, J. H. Cock, and K. A. Gomez. 1972. Laboratory manual for physioligical studies of rice. IRRI, Los Baros. Philippines:36-37.
Zheng, R., Y. Wu, and Y. Xia. 2012. Chlorocholine chloride and paclobutrazol treatments promote carbohydrate accumulation in bulbs of Lilium Oriental hybrids ‘Sorbonne’. J. Zhejiang. Univ Sci. 13:136-144.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top