跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/05 13:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張智華
研究生(外文):Chang, Chih-Hua
論文名稱:熱電漿觸媒重組溫室氣體產製合成氣技術之研究
論文名稱(外文):Plasma Catalytic Reforming of Green House Gas to Syngas Fuel
指導教授:謝哲隆
指導教授(外文):Shie, Je-Lueng
口試委員:謝哲隆張慶源陳奕宏林欣瑜
口試委員(外文):Shie, Je-LuengChang, Ching-YuanChen, Yi-HungLin, Hsin-Yu
口試日期:2012-07-12
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:環境工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:203
中文關鍵詞:電漿觸媒生質物都市固體廢棄物甲烷二氧化碳重組反應合成氣
外文關鍵詞:PlasmaCatalystBiomassMunicipal solid wasteMethaneCarbon dioxideReforming reactionSyngas
相關次數:
  • 被引用被引用:3
  • 點閱點閱:283
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
合成氣(CO + H2)對環境來說是種乾淨的燃料,可從煤礦、石油、天然氣、生質物甚至是有機垃圾製造產生。甲烷(CH4)及二氧化碳(CO2)是溫室氣體中的重要組成成份,其重組技術的發展除可以降低溫室氣體效應外,更可以產生乾淨高熱值且高附加價值的合成氣。本研究使用熱電漿(電漿火炬)搭配觸媒進行二階段式電漿觸媒重組CO2及CH4,探討將其轉製成合成氣之可行性,並尋找最適化操作參數。研究操作條件探討在不同CH4/CO2配比(4/1、4/2、4/3、4/4、4/6、4/8)與(3/7、4/6、5/5、6/4、7/3)、CH4和CO2總流量(0.5、1.0、1.5、2.0、2.5 slpm)、反應溫度(573、673、773、873 K)、蒸氣流量(0、1、2、3 mL min-1)、觸媒(Al2O3、Ni/Al2O3、Ni-Ce/Al2O3)、空間流速(3,072、4,607、9,215 hr-1)和同時添加蒸氣與觸媒下,對CH4與CO2轉換率(conversion)、CO與H2選擇率(selectivity)和產率(yield)、產物濃度、H2/CO比例及能量轉換效率(energy convension of efficiency, ECE)之影響。第一部分探討第一階段電漿重組CH4與CO2之情形,其結果顯示,主要產氣以合成氣(CO + H2)為主。固定CH4流量下,隨著CH4/CO2比例增加,CH4及CO2轉換率和H2選擇率、H2/CO比例皆有上升趨勢。但在固定CH4 + CO2流量下,卻只有H2選擇率上升。而在4/6此比例時均有最高ECE值,其值為0.49,總流量愈低,轉換率均大幅上升,在0.5 slpm下有最高轉換率與選擇率。反應溫度提升至673 K後,達到最高轉換率及ECE值。因此,第一階段CH4/CO2電漿重組結果,最適化操作條件若以轉換率及選擇率來看,為CH4/CO2 4/6,溫度673 K,總流量0.5 slpm。若以ECE來看,則總流量變為2.5 slpm,此時有最高ECE值0.49。主要反應機制除了有二氧化碳重組反應(CH4 + CO2 → 2CO + 2H2)外,尚有甲烷降解反應(CH4 → C + 2H2)。所得碳黑BET達153 m2/g,C元素占67.63 wt.%。第二部分為第一階段重組反應器添加蒸氣。添加蒸氣後,因水氣流量增加導至CH4、CO2轉換率及CO產率均下降,但對於H2產率卻有明顯的提升,相對於投入CH4中的H量,在水氣流量3 ml min-1下,產率可達169.7 %。H2濃度上升可達2倍,主要是產生了蒸氣重組反應(CH4 + H2O → CO + 3H2)及碳氣化反應(C + H2O → CO + H2)。第三部分為熱電漿反應器搭配觸媒反應器,形成二階段式之電漿觸媒反應系統。Ni-Ce/Al2O3觸媒為利用共含浸法製造出之雙金屬複合觸媒,EDS顯示在50:10溶液配比下,可得12.58 wt.% Ni及4.03 wt.% Ce均勻分布於Al2O3表面。尚未添加水氣時,在操作條件為CH4/CO2比4/6,CH4 + CO2總流量0.5 slpm、反應器溫度673 K及Ni-Ce/Al2O3觸媒於空間流速4,607 hr-1下,其二階段式電漿觸媒重組和一階段電漿重組結果相比,CH4及CO2的轉換率從95.1及86.2 %提升至98.3及91.7 %。H2及CO選擇率分別從86.7及90.0 %提升至87.6及90.1 %。於添加水氣後,雖然CH4及CO2轉換率及CO產率下降,但H2產率、濃度及H2/CO比卻升高至192.5 %、88,295 ppmv及3.39。可產生高純度的H2,此時發生了水氣轉移反應(Water-gas shift, WGS)(CO + H2O → H2+ CO2)及Boudouard反應(2CO → C + CO2)。因此本技術除了可將CH4及CO2提高轉換率達九成以上及產生大量合成氣外,搭配觸媒可進一步提高轉換率及H2選擇率。在添加水氣後,由於提供更多H及O源,可大幅提升H2產率和產氣量及高H2/CO比。本系統所需能量可從生質物氣化而得,據此,本技術除可將溫室氣體能源化外,對降低廢棄物或生質物熱處理後之溫室氣體排放亦具成效,是一頗具商業化潛力技術。

Synthesis gas (or “syngas”), a mixture of carbon monoxide and hydrogen, is an important intermediate for various synthesizing chemicals and environmentally clean fuels. Synthesis gas can be produced from coal, petroleum coke, natural gas, biomass and even from organic wastes. CH4 and CO2 reforming is of rapid growing interest for reasons of the continuous decrease of petroleum resources and the emphasis on the environmental situation for greenhouse gas mitigation. In this study, a two-stage plasma catalytic reaction system was used to test the reforming feasibility of CO2 and CH4 that were produced from the gasification of biomass or combustion of wastes. The sutiable operating parameters, including CH4/CO2 ratio (4/1 to 4/8 and 3/7 to 7/3), total flow rates (0.25 to 2.5 slpm), reactor temperatures (573 to 873 K), water flow rates (0 to 3 mL min-1), space velocity (3,072, 4,607 and 9,215 hr-1), catalysts (Al2O3, Ni/Al2O3 and Ni-Ce/Al2O3) were tested and evaluated for the first and second stage reactions. The comparison indicators were conversions of CH4 and CO2, selectivities of H2 and CO, concentrations of products, H2/CO ratio, H2 yield at case of water injection and energy conversion efficiency (ECE).In the first stage, the major products were syngas (CO + H2) in the reforming of CO2 and CH4. At the constant flow rate of CH4 (1 slpm), conversions of CH4 and CO2, selectivity of H2 and ratio of H2/CO increased with the increase of CH4/CO2 ratio. However, only H2 selectivity increased at the constant flow rate of CH4 + CO2 (1 slpm). At constant flow rate of CH4 (1 slpm), the highest value of ECE (0.49) achieved at the CH4/CO2 ratio of 4/6 in the total flow rate of 2.5 slpm. About the conversions of CH4 and CO2, their values increased with the decrease of total flow rate while the highest conversions appearing at 0.5 slpm of total flow rate with CH4/CO2 ratio equal of 4/6. Regarding of the effect of temperature, conversions of CH4 and CO2 showed the highest values at 673 K. The major reaction mechanism are carbon dioxide reforming (CH4 + CO2 → 2CO + 2H2) and methane decomposition (CH4 → C + 2H2). The residue carbon black contained 67.63 wt.% pure C and BET surface area of 153 m2/g. In order to increase the yield of H2 and CO, the steam was injected into the reactor in the first stage following the suitable operational parameters. After the steam injection, both of conversions of CH4 and CO2, and selectivity of CO2 decreased, nevertheless, the H2 yield (ratio relative to the input H mass from CH4) increased dramatically with the highest value of 169.7 wt.% at the water flow rate of 3 ml min-1. The concentrations of H2 increased from 47,564 to 82,729 ppmv with 2 fold. Steam reforming and cabon gasification reactions took place at this situation.
In the third part of this study, two stage plasmatron catalytic system were used to the reforming reaction of CH4 and CO2 by combining of plasma torch and catalytic reactor packed with catalysts (Al2O3, Ni/Al2O3, Ni-Ce/Al2O3). Ni-Ce/Al2O3 was prepared by using co-impregnation method. In the solution ratio of 50:10, Ni and Ce mass pencentage were 12.58 and 4.03 wt.%, respectively, and they were coated on support (Al2O3) uniformly proved from EDS image. Under the situation without steam, the conversion of CH4 and CO2 increased from 95.1 and 86.2 % to 98.3 and 91.7 %, respectively, of the operational conditions as CH4/CO2 4/6, CH4 + CO2 = 0.5 slpm, T = 673 K and space velocity of 4,607 hr-1 at Ni-Ce/Al2O3 catalyst. At the same situation, selectivities of H2 and CO also increased from 86.7 and 90 % to 87.6 and 90.1 %, respectively. After the steam injection, H2 yield, H2 concentration and H2/CO ratio increased to 192.5 %, 88,295 ppmv and 3.39, respectively. However, the conversions of CH4 and CO2 as well as yield of CO decreased at the same condition. Due to the high concentration of H2, water-gas shift reaction (CO + H2O → H2 + CO2) controlled the process.In conclusion, this study proved that CH4 and CO2 conversions were higher than 90 % with lange amount of production of syngas. The combination of catalytic reaction and steam injection enhanced most of the evaluated indicators, such as conversion, selectivity, concentration, H2/CO ratio etc. The need of energy for this system can be recovered from the biomass gasification. Therefore, green house gas not only can be utilizated as energy source but also can reduce the emission of green house gas produced from the thermal treatment of waste or biomass. The plasmatron catalytic system is a potential technology for commercialization.

目錄
摘要 I
ABSTRACT IV
目錄 VII
圖目錄 XII
表目錄 XXVI
符號說明 XXVII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 4
第二章 文獻回顧 5
2.1 生質能與生物精煉 5
2.1.1 生質能 5
2.1.2 生物精煉 10
2.2 國內生質能源發展技術概況 13
2.2.1 固態廢棄物衍生燃料 (RDF) 14
2.2.2 氫能製造技術 16
2.2.3 生質柴油製造技術 17
2.2.4 厭氧醱酵產製甲烷發電技術 19
2.2.5 生質能熱電系統技術 21
2.2.6 熱裂解(pyrolysis)技術 23
2.2.7 氣化(gasification)技術 24
2.2.8 蒸煮及焙燒 (torrefaction)技術 26
2.2.9 生質物氣化合成氣製備生質原油 (GTL) 28
2.3 甲烷與二氧化碳來源 29
2.3.1 甲烷來源 29
2.3.2 二氧化碳來源 33
2.4 甲烷和二氧化碳控制與利用技術 37
2.4.1 甲烷控制與利用技術 37
2.4.2 二氧化碳控制與利用技術 40
2.5 合成氣用途 43
2.6 電漿 45
2.6.1 電漿原理 46
2.6.2 電漿種類 48
2.7 甲烷及二氧化碳電漿觸媒轉化技術 50
2.7.1 轉化技術之反應機制 50
2.7.2 影響轉化效率之控制參數 53
2.7.3 電漿與觸媒重組技術發展概況 55
第三章 研究方法 60
3.1 研究流程圖 60
3.2 電漿火炬及觸媒反應器 62
3.2.1 電漿火炬及觸媒反應器架設 62
3.2.2 電漿火炬及觸媒反應器操作 66
3.3 氣體產物分析與計算 67
3.3.1 氣相層析儀-熱導偵測器 (GC-TCD) 67
3.3.2 氣相層析儀-質譜儀 (GC-MS) 69
3.3.3 計算 71
3.4 固體產物分析 73
3.4.1 元素分析儀 (EA) 73
3.4.2 表面積測定儀 (BET) 74
3.5 觸媒的製備與鑑定方法 75
3.5.1 觸媒的製備 75
3.5.2 觸媒的鑑定方法 76
第四章 結果與討論 79
4.1 電漿重組甲烷與二氧化碳之最適化操作條件探討 79
4.1.1 電漿重組穩定時間測試 80
4.1.1.1 甲烷與二氧化碳各別進流量對轉換率之影響 82
4.1.1.2 單獨通入二氧化碳電漿重組結果 89
4.1.2 甲烷與二氧化碳進流配比對電漿重組之影響 94
4.1.2.1 固定CH4流量下調整配比 95
4.1.2.2 固定CH4及CO2總流量下調整配比 103
4.1.3 甲烷與二氧化碳總進流量對電漿重組之影響 110
4.1.4 溫度對甲烷與二氧化碳電漿重組之影響 117
4.2 水氣對電漿重組甲烷與二氧化碳之影響 124
4.3 二階段電漿觸媒重組甲烷與二氧化碳 131
4.3.1 觸媒特性分析 131
4.3.2 空間流速對甲烷與二氧化碳電漿觸媒重組之影響 142
4.3.3 鎳與鈰觸媒對甲烷與二氧化碳電漿重組之影響 153
4.4 蒸氣添加對二階段甲烷與二氧化碳電漿重組之影響 165
4.5 綜合討論 177
第五章 結論與建議 183
5.1 結論 183
5.2 建議 186
參考文獻 187
附錄A 檢量線製作 194
A.1 H2檢量線製作 194
A.2 CO檢量線製作 196
A.3 CH4檢量線製作 198
A.4 CO2檢量線製作 200
附錄B 單通氣體背景值 202

參考文獻
1.Baumann H., Bittner D., Beiers H.G., Klein J., Juntgen H. (1998) “Pyrolysis of coal in hydrogen and helium plasmas,” Fuel, 67(8), 1120-1123.
2.BBC News “EU rethinks biofuels guidelines,” 2008a, available at http://news.bbc.co.uk/go/pr/fr/-/2/hi/europe/7186380.stm.
3.BBC News “UN warns on food price inflation,” 2008b, available at http://news.bbc.co.uk/go/pr/fr/-/2/hi/in_depth/7281686.stm.
4.Bridgwater, A. V. (1999) “Fast pyrolysis of biomass: a handbook,” Vol. 1, Chapter 1, p.1, CPL Press.
5.Demirbas A. (2009) “Biorefineries: Current activities and future developments,” Energy Conversion and Management, 50, 2782–2801.
6.Directive of the European Parliament and of the Council, (2008) “ The Promotion of the Use of energy from renewable sources, ” presented by the Commission of the European Communities.
7.Directive of the European Parliament and of the Council, (2003) “ The Promotion of the Use of Biofuels or Other Renewable Fuels for Transport, ” Official Journal of the European Union, pp. 42-46.
8.Dissanayake, D., Rosynek, M.P., Kharas K.C.C., Lunsford, J.H. (1991) “Partial Oxidation of Methane to Carbon Monoxide and Hydrocarbon over a Ni/Al2O3 Catalyst,” J. catal., Vol. 132, 117-127.
9.Feron P. H. M., Jansen A. E. (1997) “The Production of Carbon Dioxide from Flue Gas by Membrane Gas Absorption,” Energy Conv. Manag. 38, 93
10.Flucheri L., Schwob Y., Fabry F., Flamant G., Chibante L.F.P., Laplaze D. (2000) “Fullerene production in a 3-phase ac plasma process,” carbon 38, 797.
11.Fulcheri L., Schwob Y. (1995) “From methane to hydrogen, carbon black and water,” International Journal of Hydrogen Energy, 20(3), 197-202.
12.Granada E., Lopez-Gonzalez L. M., Miguez J. L., Moran J., (2002) “Fuel lignocellulosic briquettes, die design and products study, ” Renewable Energy, 27, 561-573.
13.Holmen A. (2009) “Direct conversion of methane to fuels and chemicals,” Catalysis Today, 142, 2–8.
14.Hua W., Jin L.J., He X.F., Liu J.H., Hu H.Q. (2010) “Preparation of Ni/MgO catalyst for CO2 reforming of methane by dielectric-barrier discharge plasma,” Catalysis Communications, 11, 968–972.
15.Jiang T., Li Y., Liu C.J., Xua G.H., Eliasson B., Xue B. (2002) “Plasma methane conversion using dielectric-barrier discharges with zeolite A,” Catalysis Today, 72, 229–235.
16.Karakurt I., Aydin G., Aydiner K. (2012) “Sources and mitigation of methane emissions by sectors: A critical review,” Renewable Energy 39, 40-48.
17.Kim S.C., Chun Y.N. (2008) “Production of hydrogen by partial oxidation with thermal plasma,” Renewable Energy, 33, 1564–1569.
18.Kogelschatz U. (2004) “Atmospheric-pressure plasma technology,” Plasma Physics and Controlled Fusion, 46, B63-B75.
19.Koo K.Y., Roh H.S., Jung U.H., Wang L.Y. (2009) “CeO2 promoted Ni/Al2O3 catalyst in combined steam and carbon dioxide reforming of methane for gas to liquid (GTL) process,” Catalysis Letters, 130, 217–221.
20.Kwant K. W. (2002) “Status of gasification in countries participating in the IEA biomass gasification and gas net activity,” Novem, Utrecht, 1-118.
21.Lee D.H., Kim K.T., Cha M.S., Song Y.H. (2010) “Plasma-controlled chemistry in plasma reforming of methane,” International Journal of Hydrogen Energy, 35, 10967–10976.
22.Li D., Li X., Bai M., Tao X., Shang S., Dai X., Yin Y. (2009) “CO2 reforming of CH4 by atmospheric pressure glow discharge plasma: A high conversion ability,” International Journal of Hydrogen Energy, 34, 308–313.
23.Li X., Bai M.G., Tao X.M., Shang S.Y., Yin Y.X., Dai X.Y. (2010) “Carbon dioxide reforming of methane to synthesis gas by an atmospheric pressure plasma jet,” Journal of Fuel Chemistry and Technology, 38(2), 195–200.
24.Long H.L., Shang S.Y., Tao X.M., Yin Y.X., Dai X.Y. (2008) “CO2 reforming of CH4 by combination of cold plasma jet and Ni/γ-Al2O3 catalyst,” International Journal of Hydrogen Energy, 33, 5510–5515.
25.Ni G.H., Lan Y., Cheng C., Meng Y.D., Wang X.K. (2011) “Reforming of methane and carbon dioxide by DC water plasma at atmospheric pressure,” International Journal of Hydrogen Energy, 36, 12869–12876.
26.Rostrup-Niesen J.R. (1997) “Industrial Relevance of Coking,” Catalysis. Today, 37, 225-232.
27.Shie J.L., Tsou F.J., Lin K.L. (2010) “Steam plasmatron gasification of distillers grains residue from ethanol production,” Bioresource Technology 101, 5571–5577.
28.Shie, J.L., Chang, C.Y., Lin, J.P., Wu, C.H., Lee D.J., Chang, C.F. (2004) “Kinetics of the oxidative thermal treatment of oil sludge at low heating rates,” Energy & Fuels, 18(5), 1272-1281.
29.Shie, J.L., Chang, C.Y., Lin, J.P., Wu, C.H., Lee, D.J. (2000) “Resources recovery of oil sludge by pyrolysis: kinetics study,” J. Chem. Technol. Biotechnol., 75, 443-450.
30.Shie, J.L., Chang, C.Y., Tu, W.K., Tang, Y.C., Liao, J.K., Tzeng, C.C., Li, H.Y., Yu, Y.J., Kuo, C.H., Chang, L.C. (2008) “Major products obtained from plasma torch pyrolysis of sunflower-oil cake,” Energy & Fuels, 22, 75–82.
31.Shie, J.L., Chang, C.Y., Tzeng, C.C., Hung, P.Y., Chang, C.C., Chiang, S.W., Tseng, J.Y., Tu, W.K., Yuan, M.H., Li, H.Y., Yu, Y.J. (2010) “Water-enhanced reforming of syngas to fuels and chemicals in a batch reactor,” J. Environ. Eng. Manage., 20(3), 181-187.
32.Shie, J.L., Chen, Y.H., Chang, C.Y., Lin, J.P., Lee, D.J., Wu, C.H. (2002) “Thermal pyrolysis of polyvinyl alcohol and its major products,” Energy & Fuels, 16, 109–118.
33.Shie, J.L., Lin, J.P., Chang, C.Y., Wu, C.H., Shih S.M., Lee, D.J. (2004) “Pyrolysis of oil sludge with additives of catalytic solid wastes,” J. Anal. Appl. Pyrol., 71(2), 695-707.
34.Shie, J.L., Tsou, F.J., Lin, K.L. (2010) “Steam Plasmatron Gasification of Distillers Grains Residue from Ethanol Production,” Bioresource Technology, 101, 5571-5577.
35.Shie, J.L., Tsou, F.J., Lin, K.L., Chang, C.Y. (2010) “Bioenergy and Products from Thermal Pyrolysis of Rice Straw Using Plasma Torch,” Bioresource Technology, 101, 761–768.
36.Tao X.M., Bai M.G., Li X., Long H.L., Shang S.Y., Yin Y.X., Dai X.Y. (2011) “CH4-CO2 reforming by plasma - challenges and opportunities,” Progress in Energy and Combustion Science 37, 113-124.
37.Tao X.M., Qi F.W., Yin Y.X., Dai X.Y. (2008) “CO2 reforming of CH4 by combination of thermal plasma and catalyst,” International Journal of Hydrogen Energy, 33, 1262-1265.
38.Tonejc A.M., Turkovic, A., Gotic, M., Music, S., Vukovic, M., Trojko R., Tonejc, A. (1997) “HREM, TEM and XRD observation of nanocrystalline phases in TiO2 obtained by the sol-gel method,” Mater. Letters., 31(1-2), 127-131.
39.Tu W.K., Shie J.L., Chang C.Y., Chang C.F., Lin C.F., Yang S.Y., Kuo J.T., Shaw D.G., Lee D.J. (2008) “Pyrolysis of rice straw using radio-frequency plasma,” Energy & Fuels, 22, 24–30.
40.Vesel A., Mozetic M., Drenik A., Balat-Pichelin M. (2011) “Dissociation of CO2 molecules in microwave plasma,” Chemical Physics, 382, 127-131.
41.Wang S.G., Cao D.B., Li Y.W., Wang J.G., Jiao H.J. (2006) “CO2 Reforming of CH4 on Ni3+:A density functional theory calculation, Journal of Physical chemistry B, 110, 9976-9983.
42.Wang Y.F., Tsai C.H., Chang W.Y., Kuo Y.M. (2010) “Methane steam reforming for producing hydrogen in an atmospheric-pressure microwave plasma reactor,” International Journal of Hydrogen Energy, 35, 135–140.
43.Wender I. (1996) “Reaction of Synthesis Gas,” Fuel Processing Technology, 48, 189-297.
44.Yao, S.L., Okumoto M., Nakayama A and Suzuki E. (2001) “Plasma Reforming and Coupling of Methane with Carbon Dioxide,” Energy Fuel, 15, 1295.
45.Zhao Z.L., Huang H.T., Wu C.Z., Li H.B., Chen Y. (2001) “Biomass pyrolysis in an argon/hydrogen plasma reactor,” Chemical Engineering & Technology, 24(11), 197-199.
46.Zhu X.L., Huo P.P., Zhang Y.P., Cheng D.G., Liu C.J. (2008) “Structure and reactivity of plasma treated Ni/Al2O3 catalyst for CO2 reforming of methane,” Applied Catalysis B: Environmental, 81, 132–140.
47.任睿秋,蔡春進,2000,「二氧化碳的儲存及再利用技術之探討」,工業污染防制第74,第30頁。
48.國際能源總署,2000,「2000年世界能源展望摘要版」(World Energy Outlook 2000--Highlights)
49.賴文漢,2000,「CH4 + CO2於ZrO2/SiO2和La2O3/Al2O3的負載式鉑觸媒之重組反應研究」,國立中央大學碩士論文。
50.鄭幸雄、陳錫添、林秋裕、曾怡禎、李季眉、林信一、林明瑞、劉文佐,2001,「台灣生物產氫研究現況及未來發展」,國科會生物產氫研究成果發表會,台南成功大學,pp. 1-1~1-9。
51.董家齊、陳寬任,2002,「奇妙的物質第四態─電漿」,科學發展,354 期,50-59。
52.李文峰,2002「以MEA溶液去除煙道中二氧化碳之研究」,國立成功大學研究所碩士論文。
53.戴文堅、李宗憲,2003,「固態廢棄物衍生燃料技術之應用評估」,第六屆資源與環境學術研討會,花蓮,台灣。
54.王明光等,2003,實用儀器分析,合記圖書出版社。
55.陳志平,2004,「生質柴油技術」,化工技術月刊第147期,第135–146頁。
56.蔡政賢,2004,「高週波及微波電漿轉化甲烷為合成氣之研究」,國立高雄應用科技大學化學工程學系碩士論文。
57.能源效率提升與二氧化碳減量案例探討,2006
58.萬皓鵬、李宏台,2006,「定置型生質能源熱電應用系統」,台灣省鍋爐協會雙月刊第108期。
59.美國環境保護署,2006,網址:www.epa.gov/climatechange/economics/international.html。
60.梁立緯,2006,「以高溫微波電漿火炬轉化甲烷與二氧化碳之研究」,私立中原大學碩士論文。
61.楊宇傑,2007,「生質廢棄物電漿熱裂解之研究」,國立臺灣大學環境工程學研究所碩士論文。
62.朱佳仁,2007,氣液界面的傳輸。
63.陳長文,2007,「含鎳觸媒用於二氧化碳甲烷重組反應之比較之研究」,成功大學碩士論文。
64.吳耿東、李宏台,2007,「全球生質能源應用現況與未來展望」,林業研究專訊第14卷第3期,第5–9頁。
65.行政院經濟部能源局,2007,「能源科技研究發展白皮書」,台灣。
66.許維真,2008,「鈣鈦礦型LaNiO3觸媒應用於CH4/CO2重組反應之研究」,國立成功大學材料科學及工程學系碩士論文。
67.劉致中,2008,「生質精煉產業之發展現況與前景」,ITIS產業資訊服務網。
68.吳鐘堯,2008,「添加物及蒸汽對電漿熱處理生質廢棄物之影響」,國立臺灣大學環境工程學研究所碩士論文。
69.工研院產業經濟與資訊服務中心,2008,「生質精煉技術帶動化工產業新機會探索」,工研院產業經濟與趨勢研究中心。
70.吳榮華,2010,「哥本哈根會議及台灣之因應」,國家政策研究基金會。
71.陳芃,2010,「從微小變為顯著-微藻引領第三代生質燃料發展」,能源報導,23-26。
72.王彥棋,2011,「應用蒸煮程序處理都市廢棄物及其生質物回收再利用之研究」,國立台灣大學環境工程研究所碩士論文。
73.行政院環境保護署,2011,溫室氣體減量成效-整體趨勢。
74.陳歷循,2011,「蒸汽熱處理都市固體廢棄物熱電漿裂解氣化之研究」,國立宜蘭大學環境工程研究所碩士論文。
75.謝志強,2012,「全球生質燃料產業回顧與趨勢展望」,工研院產業經濟與趨勢研究中心。
76.張家驥、王彥棋、洪臧燮、江勝偉、張慶源、李元陞、謝哲隆、陳綺萱、陳奕宏、何瓊芳,2012,「以蒸煮技術轉製廢棄物衍生生質碳燃料」,中國工程師學會會刊,pp. 40-48。
77.蔣本基、張慶源、林秋裕,2012,「推廣農林及都市與事業廢棄物之生質能源應用策略規劃」,國立台灣大學嚴慶齡工業研究中心。
78.行政院國家科學委員會,2012,國內外生質能應用現況,網址:http://web1.nsc.gov.tw/ct.aspx?xItem=8119&ctNode=439&mp=1。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top