跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 12:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡靜宜
研究生(外文):Tsai, Ching-Yi
論文名稱:曙紅及香豆素敏化含氮硫光觸媒之光電特性 及光催化效率研究
論文名稱(外文):Photoelectrochemical Characteristics and Photodegradation Efficiency of N and S-doped Photocatalyst Sensitized by Eosin Y and Coumarin
指導教授:謝哲隆
指導教授(外文):Shie, Je-Lueng
口試委員:張慶源陳奕宏林欣瑜
口試委員(外文):Chang, Ching-YuanChen, Yi-HungLin, Hsin-yu
口試日期:2012-07-12
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:環境工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:187
中文關鍵詞:染料敏化太陽能電池(DSSC)發光二極體(LED)含氮硫光觸媒(TiNxO2-xSy)香豆素(Coumarin)曙紅(Eosin Y)光催化反應(photocatalytic reaction)
外文關鍵詞:Volatile organic compounds (VOCs)toluenevisible light emitting diode (VLED)photodegradationdye-sensitized solar cellcoumarinEosin Y
相關次數:
  • 被引用被引用:2
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
由於光敏劑結合光觸媒技術製作染料敏化太陽能電池(DSSC)材料之效果及應用逐漸受到重視,本研究採用適合之光敏劑(香豆素(C9H6O2) 和曙紅(C20H6Br4Na2O5))敏化表面改質含氮硫光觸媒(TiNxO2-xSy, TNST) 並於室內可見光燈源下(日光燈管 (VLL)、紅色LED (RLED)、藍色LED (BLED)及白光LED(WLED)),探討染料敏化含氮硫光觸媒之光產電特性,及光催化降解室內污染物之效益,並做相關性比較及討論。本研究分為染料敏化光觸媒材料製備及特性分析、組裝成染料敏化太陽能電池(dye-sensitized solar cell, DSSC)及產電特性分析及染料敏化含氮硫光觸媒光催化特性及反應速率探討。
在染料敏化光觸媒材料特性分析部分,包括EA、SEM、BET、UV-Vis、XRD及NMR等。研究結果顯示,染料敏化TNST(DSNST)之EA分析中,N含量為0.19~0.29 wt. %,S含量則為 1.51~1.67 wt. %。SEM分析粒徑平均約為15~25 nm。BET為95.68~120.71 m2g-1,而由XRD及NMR可得知其晶型為Anatase。
利用染料敏化含氮硫光觸媒組裝之太陽能電池特性分析則使用循環伏安儀進行開路電壓(open-circuited output voltage, Voc) 、閉路電流(Average short circuited current, ISC )、填充因子(fill factor, FF) 、最大輸出功率 (maximum power, Pmax)及電壓(V)-電流(I)曲線測試。結果顯示,香豆素敏化含氮硫光觸媒組裝之太陽能電池(CONSDSSC)於各種光源下均有最高之Pmax,而以於VLL下有最大光產電效果,其Voc、ISC、FF、及Pmax分為24.4 Voc/g、0.025 mA、0.66、及4.81 μW。主要原因為香豆素除了在343 nm有光吸收峰外,其於457.5~541.5 nm藍至綠光範圍內亦有強吸收峰。曙紅敏化含氮硫光觸媒組裝之太陽能電池(EYNSDSSC)於BLED時則有最大之Voc,其值為26.7 Voc/g。主要原因為曙紅吸收峰介於263~317.5 nm間,偏向UVA及UVB範圍,因此,可見光非其主要吸光範圍。比較各不同光源下之平均Pmax值,其依序為CONSDSSC (3.60 μW) > EYNSDSSC (2.13 μW) > TNSSC (1.16 μW) > TSC (0.51 μW) > EYDSSC (0.5 μW) > CODSSC (0.42 μW)。依此結果顯示,光觸媒含氮硫後敏化對提升Pmax有幫助,而如果無含氮硫,只是添加敏化劑,則對Pmax效果不明顯。除此之外,含氮硫光觸媒組裝之太陽能電池其各項光電特性指標均高於商用光觸媒組裝之電池。證明染料敏化含氮硫光觸媒可以大幅提高光產電特性且明顯改變其吸光波長,產生紅移現象。
染料敏化TNST之光催化降解中,以香豆素敏化含氮硫光觸媒(CONSDST)降解甲苯有最佳之增進效果,在甲苯初始濃度為30 ppmv,其於VLL下,10分鐘內可降解甲苯93 %,單位觸媒降解甲苯量可達503.74 mg/g,其假一階速率常數kobs及初始光催化反應速率ro分別為0.34 min-1及10.30 ppmv min-1。與同為VLL下無敏化TNST的kobs及ro’相比,分別為其5.55及5.88倍,增進效果顯著。CONSDST於VLL下光催化降解之T10、T50及T90分別為1、3及7 min。而不管任何光源下,其kobs及ro值均依序為CONDST > TNST > EYNSDST。因此顯示CONSDST適合各色波長,特別是在白光波長時其對光催化有明顯增進效果。
比較光電轉換效應(Pmax)與光催化反應速率(ro)下,顯示只有CONSDST其於各光源的Pmax和各光源下的r0有相同趨勢,依序均為VLL > BLED > WLED > RLED。顯示在以香豆素為染料,敏化含氮硫光觸媒所形成的材料,其受光激發產電及產生光催化所需之激發電子電洞對有正相關性。針對Pmax和r0的迴歸結果,其相關方程式為r0=3.46×10-2 e1.1185Pmax,Pmax及r0單位分別為μW及ppmv min-1。因此從本研究得到之結果,可以適用於室內DSSC和室內染料敏化光觸媒之污染物光催化設計。未來更可依此進行更深入之探討,協助現今DSSC效率瓶頸的突破。

This study investigated the surface modification of N and S-doped TiO2 (TiNxO2-xSy, TNST) which was prepared by Ti(SO4)2 and NH3 and it’s photoelectricity characteristics after dye-sensitized by nature dyes including coumarin (C9H6O2) and eosin Y (C20H6Br4Na2O5) and the feasibilities for the removal of volatile organic compounds (VOCs) from indoor air pollution, taking toluene as a model compound. TiO2 (DST) and TiNxO2-xSy (DSNST) was coated on indium-doping tin oxide (ITO) promoting with sensitizers, that were prepared by precipitation method. The irradiation light source were visible light lamp (VLL) and visible light emitting diode (VLED), such as blue LED (BLED), red LED (RLED) and white LED (WLED).
The photovoltaic characterisitic of dye-sensitized solar cell (DSSC) were analyzed by Cyclic Voltammetry, including open-circuited output voltage (Voc), short-circuited output current (Isc), fillfactor (FF) and energy power maximum (Pmax) from I-V curves. The characteristics of DST and DSNST including scan electron microscopy (SEM), Elemental Analy (EA), UV/vis spectrophotometery (UV/vis), Brunaner, Emmett and Teller Analyzer (BET) and powder X-ray diffraction (XRD) were performed. Toluene was analyzed by Gas Chromatography-Mass Spectrophotometer (GC/MS).
SEM showed that the pariticle size of TNST was about 15-25 nm and the aggregations of TiO2 and TNST appeared after the dye precipitation. The adsorption elements of N and S on CONSDST and EYNSDST were about 1.96 and 1.83 wt.%, respectively, and only about 0.12 wt.% on CODST and EYDST. For the UV/vis analysis, coumarin showed two special peaks at 343, 457.5~541.5 nm and they were near the wavelength of UV, blue and green lights. Eosin Y showed special peaks at 263~317.5 nm, between UVA and UVB. Then, BET values of TNST with and without nature dyes were 95.68~120.71 m2g-1, far higher than those of TiO2 with nature dyes (50~ 55.39 m2g-1).
In the photovoltaic characteristics, coumarin dye-sensitized N and S-doped TiO2 solar cell (CONSDSSC) showed the maximum Pmax at various light sources and the highest values of 4.81 µW Pmax, 0.025 mA Isc, 0.29 V Voc, and 0.66 FF at VLL. All the values of Voc, Isc and Pmax of dye-sensitized TNST for solar cell are larger than those of dye-sensitized TiO2 for solar cell. N and S-doped on TiO2 for DSSC using coumarin and Eosin Y enhanced the photoelectric characteristics obviously. About the photodecomposition analyses, the dye of coumarin increased the decomposition efficiencies (ηD) of toluene at every light irradiation. In the maximum case of CONSDST, ηD was more than 93 % at 10 min irradiation of VLL and the removal toluene mass was 503.74 mg/g. At the same case, the pseudo first-order rate constant (kobs) and reaction rate constant (ro) wrew 0.34 min-1and 10.30 ppmv min-1, respectively. All the results obtained from this study can prove the relationship between the induced Pmax of DSSC and r0 of DST and DSNST at different light sources using coumarin. Pmax and r0 of CONSDST were all in the same order of VLL > BLED > WLED > RLED.The calibration function was r0=3.46×10-2e1.1185Pmax. From the relationship, one can easily evaluate the r0 from Pmax. This is very useful information and design specifications for scientific researchers. Finally, effectively energy saving and environmentally novel technologies for the removals of VOCs were addressed in this study.

摘要 I
Abstract IV
目錄 VII
圖目錄 XII
表目錄 XVI
符號說明 XVIII
第一章 前言 1
1.1研究背景及目的 1
1.2 研究內容 3
第二章 文獻回顧 4
2.1 室內空氣污染現況 4
2.1.1 室內空氣污染原因 4
2.1.2室內空氣品質建議規範 6
2.1.3 室內常見污染物對健康之影響 8
2.1.4室內空氣污染物-甲苯(Toluene) 9
2.2 光催化降解反應 12
2.2.1 光催化反應原理及特性 12
2.2.2 可見光光觸媒催化原理及改質 16
2.2.3 可見光光觸媒製備 19
2.2.4 可見光光觸媒於空氣污染物控制上的應用 23
2.3發光二極體(LED)發展及技術 28
2.3.1發光二極體之歷史與技術特性 28
2.3.2發光二極體於光催化之應用 30
2.4光敏劑-染料 31
2.4.1 香豆素 31
2.4.2 曙紅 32
2.5 染料敏化太陽能電池(DSSC) 34
2.5.1染料敏化太陽能電池歷史發展 34
2.5.2染料敏化太陽能電池原理 35
2.6染料敏化光觸媒之光催化應用 40
2.6.1染料敏化光觸媒之光催化原理 40
2.6.2染料敏化光觸媒之光催化應用 42
第三章 研究方法 46
3.1 實驗流程 46
3.2 材料製備 48
3.2.1 改質可見光含氮硫光觸媒(TiNxO2-xSy)之製備方法 48
3.2.2 可見光光敏劑(染料)之製備方法 50
3.2.3 光觸媒批覆之製備方法 51
3.2.4 染料敏化太陽能電池之製備 51
3.2.5 光催化降解實驗之製備 55
3.2.6 光源照度之量測 58
3.3 觸媒特性分析方法 64
3.3.1 元素分析儀(EA) 66
3.3.2紫外可見光光譜儀(UV-Vis) 66
3.3.3掃描式電子顯微鏡(SEM) 67
3.3.4表面積及孔隙度測定儀(BET) 67
3.3.5 X光粉末繞射儀 (XRD) 71
3.3.6核磁共振光譜儀(NMR) 72
3.4染料敏化太陽能電池(DSSC)電化學特性分析 74
3.4.1設備介紹 74
3.4.2 操作步驟 74
3.5 可見光催化降解甲苯氣體之產物分析 76
3.5.1設備介紹 76
3.5.2 操作條件設定 76
3.5.3 操作步驟 77
第四章 結果與討論 79
4.1 染料敏化光觸媒特性分析 79
4.1.1 元素分析儀(EA)分析 79
4.1.2紫外可見光光譜儀(UV-Vis)分析 81
4.1.3掃描式電子顯微鏡(SEM)分析 82
4.1.4表面積及孔隙度測定儀(BET)分析 85
4.1.5 X光粉末繞射儀 (XRD)分析 87
4.1.6核磁共振光譜 (NMR) 分析 91
4.2 染料敏化光觸媒光產電特性 94
4.2.1 不同濃度之開路電壓特性 94
4.2.2不同光源下之開路電壓特性 97
4.2.3平均開路電壓及閉路電流 103
4.2.4電流-電壓曲線及最大輸出功率 107
4.3 染料敏化光觸媒之光催化特性 116
4.3.1染料敏化不同光觸媒之光催化降解 116
4.3.1.1 含氮硫光觸媒於不同光源下之光降解 117
4.3.1.2 曙紅敏化含氮硫光觸媒於不同光源下之光降解 121
4.3.1.3香豆素敏化含氮硫光觸媒於不同光源下之光降解 125
4.3.2 含氮硫光觸媒敏化後於固定光源下之光降解 130
4.3.2.1染料敏化含氮硫光觸媒於BLED光源下之降解 130
4.3.2.2染料敏化含氮硫光觸媒於VLL光源下之降解 133
4.4 光催化反應速率常數比較 136
4.5光電特性與光催化特性相關性 139
4.5.1 光電轉換效應與光催化反應速率之比較 139
4.5.2 CONSDST/CONSDSSC下ro與Pmax相關性方程式 142
第五章 結論與建議 144
5.1結論 144
5.2 建議 146
參考文獻 148
A.甲苯檢量線建立 158
B.染料敏化含氮硫光觸媒於RLED光源下之降解 159
C.染料敏化含氮硫光觸媒於WLED光源下之降解 161

1.Alexander, M.V., Rosentreter, J.J., “Photocatalytic oxidation of aqueous trichloroethylene using dye sensitized buoyant photocatalyst monitored via micro-headspace solid-phase microextration gas chromatography/electron capture detection and mass spectrometry,” Microchemical Journal, 88, 38-44 (2008).
2.Arabatzis, I.M., Antonaraki, S., Stergiopoulos T., Hiskia, A., Papaconstantinou, E., Bernard, M.C., Falaras, P., “Preparation, characterization and photocatalytic activity of nanocrystalline thin film TiO2 catalysts towards 3,5-dichlorophenol degradation,” Journal of Photochemistry and Photobiology A: Chemistry, 149, 237–245 (2002).
3.Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y., “Visible-light photocatalysis in nitrogen-doped titanium oxides, ” Science, 293, 269–271 (2001).
4.Asilturka, M., Sayılkana, F., Arpac, E., “Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation,” Journal of Photochemistry and Photobiology A: Chemistry, 203, 64-71 (2009).
5.Bae, E., Choi, W., “Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized Metal/TiO2 under visible light,” Environ. Sci. Technol., 37, 147–152 (2003) .
6.Beranek, R., Neumann, B., Sakthivel, S., Janczarek, M., Dittrich, T., Tributsch, H., Kisch, H., “ Exploring the electronic structure of nitrogen-modified TiO2 photocatalysts through photocurrent and surface photovoltage studies,” Chemical physics, 339, 11-19 (2007).
7.Bräuniger, T., Madhu, P.K., Pampel, A., Reichert, D., “Application of fast amplitude-modulated pulse trains for signal enhancement in static and magic-angle-spinning 47,49Ti-NMR spectra ,” Solid State Nuclear Magnetic Resonance 26, 114–120 (2004).
8.Chatterjee, D., “Effect of excited state redox properties of dye sensitizers on hydrogen production through photo-splitting of water over TiO2 photocatalyst,” Catalysis Communications, 11, 336–339 (2010).
9.Chen, D.H., Ye, X., Li, K., “Oxidation of PCE with a UV LED Photocatalytic Reactor,” Chemical Engineering & Technology, 28(1), 95-97 (2005).
10.Cheung, S.H., Nachimuthu, P., Joly, A.G., Engelhard, M.H., Bowman, M.K., Chambers, S.A., “N incorporation and electronic structure in N-doped TiO2(1 1 0) rutile,” Surface Science, 601(7), 1754-1762 (2007).
11.Chiou, C.H., Juang, R.S., “ Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles,” Journal of Hazardous Materials 149, 1–7 (2007).
12.Cho, Y., Choi, W., Lee, C.H., Hyeon, T., Lee, I.H., “Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2,” Environ. Sci. Technol., 35(5), 966–970 (2001)
13.Choi, S.K., Yang, H.S., Kim, K.H., Park, H.W., “ Organic dye-sensitized TiO2 as a versatile photocatalyst for solar hydrogen and environmental remediation,” Applied Catalysis B: Environmental, 121–122, 206–213 (2012).
14.Crisan, M., Braileanu, A., Raileanu, M., Zaharescu, M., Crisan, D., Dragan, N., Anastasescu M., Ianculescu, A., Nitoi, I., Marinescu,V. E., Hodorogea, S. M., “Sol-gel S-doped TiO2 materials for environmental protection,” Journal of Non-Crystalline Solids, 354, 705-711 (2008).
15.Cundall, R.B., Rudham, R., Salim, M.S., “ Photocatalytic oxidation of propan-2-ol in the liquid phase by rutile,” J. Chem. Soc. Faraday Trans. I., 72, 1642-1651 (1976).
16.Fung, A.K.M., Chiu, B.K.W., Lam, M.H.W., “Surface modification of TiO2 by a Ruthenium(II) polypyridyl complex via silyl-linkage for the sensitized photocatalytic degradation of carbon tetrachloride by visible irradiation,” Water Research, 37, 1939–1947 (2003).
17.Gao, X.D., Li, X.M., Yu, W.D., Qiu, J.J., Gan, X.Y., “ Preparation of nanoporous TiO2 thick film and its photoelectrochemical properties sensitized by merbromin,” Journal of Inorganic Materials, 22,6, 1079-1085 (2007)
18.Ghosh, J.P., Langford, C.H., Achari, G. “Characterization of an LED based photoreactor to degrade 4-Chlorophenol in an aqueous medium using coumarin (C-343) sensitized TiO2,” J. Phys. Chem. A, 112, 10310-10314 (2008).
19.Grätzel, M., O'Regan, B., “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, 353(24), 737 - 740 (1991).
20.Grätzel, M., “Sol-Gel processed TiO2 films for photovoltaic applications,” Journal of Sol-Gel Science and Technology, 22, 7-12 (2001).
21.Ho, W., Yu, J. C., Lee, S., “Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity,” Journal of Solid State Chemistry, 179, 1171-1176 (2006).
22.Huang, B., Saka S., “ Photocatalytic activity of TiO2 crystallite-activated carbon composites” J Wood Sci, 49:79–85 (2003).
23.Hung C.H. Marinas B.J., “Role of chlorine and oxygen in the photocatalytic degradation of trichloroethylene vapor on TiO2 films,” Environmental Science and Technology, 31(2), 562-568 (1997a).
24.Hung, C.H., Marinas, B.J. “Role of water in the photocatalytic degradation of trichloroethylene vapor on TiO2 films,” Environmental Science and Technology, 31(5), 1440-1445 (1997b).
25.Ihara, T., Miyoshi M., Iriyama Y., Matsumoto O., Sugihara S. “Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping ,” Applied Catalysis B: Environ., 42(4), 403-409 (2003).
26.Jin, S., Shiraishi, F., “Photocatalytic activities enhanced for decompositions of organic compounds over metal-photodepositing titanium dioxide,” Chemical Engineering Journal, 97(2-3), 203-211 (2004).
27.Jones A.P., “Indoor air quality and health,” Atmos. Environ., 33(28), 4535-4564 (1999).
28.Kang, M.G., Han, H. E., Kim, K. J.,“Enhanced photodecomposition of 4-chlorophenol in aqueous solution by deposition of CdS on TiO2,”Journal of Photochemistry and Photobiology A: Chemistry, 125, 119-125 (1999).
29.Kang, S.H., Kim, H.S., Kim, J.Yup., Sung, Y.E., “Enhanced photocurrent of nitrogen-doped TiO2 film for dye-sensitized solar cells,” Materials Chemistry and Physics, 124, 422–426 (2010).
30.Klosek, S., Raftery, D., “Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol,” J. Phys. Chem. B, 105, 2815-2819 (2001).
31.Le, T. T., Akhtar, M. S., Park, D. M., Lee, J. C., Yang, O. B., “ Water splitting on Rhodamine-B dye sensitized Co-doped TiO2 catalyst under visible light,” Applied Catalysis B: Environmental, 111-112, 397-401 (2012).
32.Li, X.Z., Li, F.B., “Study of Au/Au3+-TiO2 photocatalysts toward visible photo-oxidation for water and wastewater treatment,” Environ. Sci. Technol., 35, 2381- 2387 (2001).
33.Li, X.Z., Li, F.B., Yang, C.L., Ge, W.K., “Photocatalytic activity of WOx-TiO2 under visible light irradiation,” Journal of Photochemistry and Photobiology A: Chemistry, 141, 209–217 (2001).
34.Li, Y. X., Jiang, Y., Peng, S. Q., Jiang, F. Y., “ Nitrogen-doped TiO2 modified with NH4F for efficient photocatalytic degradation of formaldehyde under blue light-emitting diodes,” Journal of Hazardous Materials 182, 90–96 (2010).
35.Li, Y., Xie, C., Peng, S., Lu, G., Li, S., “ Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution,” Journal of Molecular Catalysis A: Chemical, 282, 117–123 (2008).
36.Linsebigler, A. L., Lu, G., Yates, J. T., “ Photocataly on TiO2 surfaces: principles, mechanisms, and selected results,” Jr. Chem. Rev., 95, 735-758 (1995).
37.Liu, S.X., Qu, Z.P., Han, X.W., Sun, C.L., “ A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide,” Catalysis Today, 93(5), 877-884 (2004).
38.Liu, Y., Liu, J., Lin, Y., Zhang, Y., Wei, Y., “ Simple fabrication and photocatalytic activity of S-doped TiO2 under low power LED visible light irradiation,” Ceram. Int, 35, 3061-3065 (2009).
39.Liu, Z.Y., Quan, X., Fu, H.B., Li, X.Y., Yang, K., “Effect of embedded-silica on microstructure and photocatalytic activity of titania prepared by ultrasound-assisted hydrolysis,” Applied Catalysis B: Environmental, 52(1), 33-40 (2004).
40.Meriaudeau P., Vedrine J.C., “ Electron paramagnetic resonance investigation of oxygen photoadsorption and its reactivity with carbon monoxide on titanium dioxide: the O33– species,” J. Chem. Soc. Faraday. Trans. II, 72, 472-480 (1976).
41.Nakano, Y., Morikawa, T., Ohwaki, T., Taga, Y.,“Origin of visible-light sensitivity in N-doped TiO2 films,” Chemical Physics, 339, 20–26 (2007).
42.Natarajan T.S., Thimas, M., Natarajan K., Bajaj, H.C., Tayacle, R.J., “Study on UV-TiO2 process for degradation of Rhodamine B dye,” Chemical Engineering Journal, 169, 126-134 (2011).
43.Nazeeruddin, M. K., Pechy, P., Grätzel, M., “ Efficient panchromatic sensitization of nanocrystalline TiO2 films by black dye based on a trithiocyanato-ruthenium complex,” J Phys. Chem. B, 18, 8981-8987 (1997).
44.Noguchi, T., Fujishima, A., Sawunyama P., and Hashimoto, K., “Photocatalytic degradation of gaseous formaldehyde using TiO2 film ,” Environmental Science & Technology, 32(23), 3831-3833 (1998).
45.Okamoto, K., Yasunori, Y., Tanaka, H., Tanaka, M., Itaya, A., “ Heterogeneous photocatalytic decomposition of phenol over TiO2 powder,” Bull. Chem. Soc, 58, 2015-2022 (1985).
46.Paramasivam, I., Macak, J.M., Ghicov, A., Schmuki, P., “Enhanced photochromism of Ag loaded self-organized TiO2 nanotube layers,” Chemical Physics Letters, 445, 233-237 ( 2007).
47.Putzeiko, E.K., Terenin, A.N., “Photosensitization of the internal photoeffect in zinc oxide and other semiconductors by adsorbed dyes, ” Zh. Fiz. Khim. 23, 676–688 (1949).
48.Qin, G., Sun, Z., Wu, Q., Lin, L., Liang, M., Xue, S., “Dye-sensitized TiO2 film with bifunctionalized zones for photocatalytic degradation of 4-cholophenol ,” Journal of Hazardous Materials, 192, 599-604 (2011).
49.Qiu, X., Burda, C., “Chemically synthesized nitrogen-doped metal oxide nanoparticles ,” Chemical Physics, 339, 1–10 (2007).
50.Rupa, A.V., Manikandan, D., Divakar, D., Sivakumar T., “ Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of Reactive Yellow-17,” Journal of Hazardous Materials, 147, 906-913 (2007).
51.Senthilnathan, J., Philip, L., “ Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2,” Chemical Engineering Journal, 161, 83–92 (2010).
52.Shie, J.L., C.H., Lee, C.S., Chiou, C.T., Chang, C.C., Chang, C.Y., Chang, Photodegradation kinetics of formaldehyde using light sources of UVA, UVC and UVLED in the presence of composed silver titanium oxide photocatalyst. Journal of Hazardous Materials, 155(1-2), 164–172 (2008).
53.Shie, J.L., Pai, C.Y., “ Photodegradation kinetics of toluene in indoor air at different humidity using light sources of UVA, UVC and UVLED in the presence of silver titanium dioxide,” Indoor Built Environ., 19(5), 503-512 (2010).
54.Shin, E.M., Senthurchelvan, R., Munoz, J., Basak, S., Rajeshwar, K., Howell, B.S.G., “ Photolytic and photocatalytic destruction of formaldehyde in aqueous media,” Journal of the Electrochemical Society 143 (5), 1562-1570 (1996).
55.Shiyanovskaya, I., Hepel, M., “Bicomponent WO3/TiO2 films as photoelectrodes,” J. Electrochem. Soc., 146, 243-249 (1999).
56.Sidheswaran, M., Tavlarides, L.L., “Visible light photocatalytic oxidation of toluene using a cerium-doped titania catalyst,” Ind. Eng. Chem. Res., 47 (10), 3346-3357 (2008).
57.Silva, C.G., Faria, J.L., “ Effect of key operational parameters on the photocatalytic oxidation of phenol by nanocrystalline sol–gel TiO2 under UV irradiation,” Journal of Molecular Catalysis A: Chemical, 305, 147–154 (2009).
58.Sleiman, M., Conchon, P., Ferronato, C., Chovelon, J.M., “Photocatalytic oxidation of toluene at indoor air levels (ppbv): Towards a better assessment of conversion, reaction intermediates and mineralization,” Applied Catalysis B: Environmental, 86, 159–165 (2009).
59.Sun, H., Bai, Y., Liu, H., Jin, W., Xu, N., “Photocatalytic decomposition of 4-chlorophenol over an efficient N-doped TiO2 under sunlight irradiation, ” Journal of photochemistry and photobiology A:Chemistry 201, 15-22 (2009).
60.Tian, B., Li, C., Gu, F., Jiang, H., “Synergetic effects of nitrogen doping and Au loading on enhancing the visible-light photocatalytic activity of nano-TiO2,” Catalysis Communications,10, 925–929 (2009).
61.Tsubomura H., Matsumura M., Nomura Y., Amamiya T., “Dye sensitized zinc oxide/aqueous electrolyte/platinum photocell,” Nature, 261, 402 (1976).
62.Vlachopoulos N., Liska P., Augustynski J., Graetzel M.,“Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films,” J. Am. Chem. Soc., 110, 1216-1220 (1988).
63.Wang, W.Y., Ku, Y., ‘‘Photocatalytic degradation of Reactive Red 22 in aqueous solution by UV-LED radiation,’’ Water Research, 40, 2249-2258 (2006).
64.Watson, D. F., Meyer, G. J., ‘‘Electron injection at dye-sensitized semiconductor electrodes,’’ Annu. Rev. Phys. Chem., 56, 119-156 (2005).
65.Wei, F., Ni, L., Cui, P., “ Preparation and characterization of N–S-codoped TiO2 photocatalyst and its photocatalytic activity,” Journal of Hazardous Materials, 156, 135–140 (2008).
66.Wilke, K., Breuer, H.D., “The influence of transition metal doping on the physical and photocatalytic properties of titania,” Journal of Photochemistry and Photobiology A: Chemistry, 121, 49-53 (1999).
67.Wu, G., Chen, A., “ Direct growth of F-doped TiO2 particulate thin films with high photocatalytic activity for environmental applications,” Journal of Photochemistry and Photobiology A: Chemistry, 195, 47–53 (2008).
68.Xiao, X.H., Jia, Z.J., Yu, Y., Liang, U., Wang, Z., Ma, L.L., “Preparation of multi-walled carbon nanotube supported TiO2 and its photo catalytic activity in the reduction of CO2 with H2O,” Carbon, 45, 717–721 (2007).
69.Yao, P.C., Hang, S.T., Lin, C.W., Hai, D.H., “ Photocatalytic destruction of gaseous toluene by porphyrin-sensitized TiO2 thin films,” Journal of the Taiwan Institute of Chemical Engineers, 42, 470–479 (2011).
70.Yella A., Lee H.W., Tsao H.N., Yi C., Chandiran A. K., Nazeeruddin M.K., Diau E.W.G., Yeh C. Y., Zakeeruddin S.M., Grätzel, M., “Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency, ” Science, 334, 629 (2011).
71.Zeltner W.A., Fu X., Anderson, M.A. “The gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts, ” Appl. Catal. B: Environ, 6, (3), 209-224 (1995).
72.Zhang, L., Zhu, Y.F., He, Y., Li, W., Sun, H.B., “ Preparation and performances of mesoporous TiO2 film photocatalyst supported on stainless steel ,” Applied Catalysis B: Environmental, 40(4), 287-292 (2003).
73.Zhao, W., Sun, Y., Castellano, F.N., “ Visible-light induced water detoxification catalyzed by PtII dye sensitized titania,” J. Am. Chem. Soc., 130 (38), 12566–12567 (2008).
74.Zhou, W., Pan, K., Qu, Y., Sun, F., Tian, C., Ren, Z., Tian, G., Fu, H., “ Photodegradation of organic contamination in wastewaters by bonding TiO2/single-walled carbon nanotube composites with enhanced photocatalytic activity,” Chemosphere, 81, 555-561 (2010).
75.Zukalova, M., Zukal, A., Kavan, L., Nazeeruddin, A.L., Liska, P., GrOtzel, M.,“ Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells,” Nano. Lett., 5(9), 1789–1792 (2005).
76.李季達,「綠色光電照明產業分析」,照明學刊,第十七卷第三期,20-25 (2000)。
77.劉如熹、王健源,「白光發光二極體製作技術-21世紀人類的新曙光」,初版,全華科技圖書出版,台北市 (2001)。
78.謝煜弘,「新世紀光源白光LED之特性與應用」,照明學刊,第十九卷第二期,11-30 (2002)。
79.室內空氣品質標準建議值,行政院環保署,檢自: http://indoow.ncet.com.tw, (2005)。
80.李佳香,「發光二極體結合改質光觸媒處理室內揮發性有機汙染物之研究」,國立台灣大學環境工程學研究所碩士論文 (2006)。
81.顏銘夆,「摻雜氮銀光觸媒特性分析及於發光二極體為光源下處理甲苯之反應動力」,國立宜蘭大學碩士論文 (2009)。
82.李秋璇,「天然及人造染料敏化二氧化鈦於LED光源下之光電效果及於甲苯汙染物去除之研究」,國立宜蘭大學環境工程學系碩士論文 (2011)。
83.國際勞工組織國際職業安全與健康資訊中心(CIS)。化學物質暴露限制。
84.藥物食品安全週報第253期,行政院衛生署,檢自: http://www.doh.gov.tw/ufile/doc/%E8%97%A5%E7%89%A9%E9%A3%9F%E5%93%81%E7%AC%AC253%E6%9C%9F.pdf。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top