(3.237.20.246) 您好!臺灣時間:2021/04/15 18:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃光暉
研究生(外文):Huang , Guang-Hui
論文名稱:以射頻濺鍍法研製高介電材料及其電性之 研究
論文名稱(外文):The Electrical Property and Preparation of High- Dielectric Materials by RF Sputtering
指導教授:劉清如
指導教授(外文):Liu , Ching-Ju
口試委員:劉清如劉醇星陳鉅泯
口試委員(外文):Liu , Ching-Ju
口試日期:2012-07-30
學位類別:碩士
校院名稱:南榮技術學院
系所名稱:工程科技研究所碩士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:67
中文關鍵詞:射頻濺鍍法二氧化鉿氧化鈦五氧化二鈦快速昇溫退火
外文關鍵詞:RF sputteringHfO2TiO2Ta2O5RTA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用射頻濺鍍法(RF magnetron sputtering),在固定反應腔壓力1m Torr、成長溫度25℃,將三種高介電材料,二氧化鉿、氧化鈦、五氧化二鉭,分別濺鍍在薄膜ITO 玻璃基板上。在濺鍍時間為20 分鐘、40 分鐘、60 分鐘,以及氣體流量不同下觀察其各薄膜沉積速率,再使用熱阻式蒸鍍法鍍上Al 作為電極。電性量測方面則使用HP4284、HP4156 測量退火前與退火後(退火時間為30 分鐘、溫度為200°C)的薄膜電容其各I-V 和C-V 特性,探討MIM 電容的崩潰電壓和漏電流密度的情形,其探討MIM 電容的崩潰電壓及漏電流有無改善。
This study using radio frequency sputtering (RF magnetron sputtering), in the fixation reaction chamber pressure 1m Torr or a growth temperature of 25℃, the three kinds of high dielectric material, HfO2、TiO2、Ta2O5, respectively, the sputtering in the film The ITO glass substrate. The sputtering time of 20min、40min、60min, and the gas flow was observed under different deposition rate, and then using thermal resistive evaporation method plated Al as electrode. Electrical measurements using the HP4284, HP4156 measured before annealing and after annealing (annealing time of 30 min, the temperature was 200℃) of the thin film capacitor of its I-V and C-V characteristics discussed MIM capacitor, the breakdown voltage and leakage current density case of MIM capacitor breakdown voltage and leakage current without improvement.
中文摘要 .........................................i
英文摘要 ....................................... ii
致謝 .......................................... iii
目錄 ............................................iv
表目錄 ........................................ vii
圖目錄 ....................................... viii
第一章 緒論 ..................................... 1
第一節 前言 ..................................... 1
第二節 動 機 .................................... 2
第三節 製程技術的改善 ........................... 4
第四節 高介電材料的開發 ......................... 7
第二章 理論基礎與文獻回顧 ...................... 10
第一節 高介電材料薄膜特性 ...................... 10
1-1 HfO2 薄膜特性 .............................. 10
1-2 Ta2O5 薄膜特性 ............................. 11
1-3 TiO2 薄膜特性 .............................. 11
第二節 介電薄膜的物理特性 .......................13
2-1 介電材料的特性 ............................. 13
2-2 介電常數 ................................... 13
2-3 電容 ....................................... 13
第三節 薄膜沉積原理 ............................ 15
3-1 電漿之基礎理論 ............................. 15
3-2 射頻濺鍍法 ................................. 16
3-3 反應性濺鍍 ................................. 19
3-4 熱阻式蒸鍍系統 ............................. 20
第四節 退火原理 ................................ 21
第三章 實驗方法與步驟 .......................... 22
第一節 實驗架構 ................................ 22
1-1 實驗流程 ................................... 22
1-2 基板裁切與清洗 ............................. 23
1-3 RF 濺鍍薄膜 ................................ 24
1-4 熱阻式蒸鍍 ................................. 25
1-5 退火處理 ................................... 26
第二節 物性量測 ................................ 27
2-1 薄膜測厚儀 ................................. 27
2-2 結晶結構分析 ............................... 28
第三節 電性量測 ................................ 29
第四章 結果與討論 .............................. 30
第一節 HfO2 特性探討 ........................... 30
第二節 TiO2 特性探討............................ 37
2-1 RF 沉積時間與膜厚的關係 .................... 38
2-2 TiO2 MIM 電容的I-V 特性 .................... 39
2-3 氣體流量與TiO2 MIM 電容特性之關係 .......... 43
2-4 氣體流量及厚度TiO2MIM 電容特性之關係 ....... 47
第三節 Ta2O5 特性探討 .......................... 49
3-1 RF 沉積時間與膜厚的關係 .................... 50
3-2 Ta2O5 MIM 電容的I-V 特性 ................... 51
3-3 氣體流量與TiO2 MIM 電容特性之關係 .......... 55
第五章 結論 .................................... 60
參考文獻 ....................................... 63
發表論文 ....................................... 67
王祥銘(民93)。應用於 Giga-bit 奈米級DRAM 的BST 高介電薄膜研究。國立雲林科技大學電子工程研究所。
李世鴻著, “積體電路製程技術”, 五南圖書出版公司, (1998), 156。
林勉何(民99)。以磁控濺鍍系統備製二氧化鉿MIS 結構之研究及其應用。南榮技術學院工程科技研究所。
吳朗,“電工材料”,全華科技,第一版,(1994),176。
吳朗,“電子陶瓷-介電”,全欣科技,第一版,(1994),94。
涂易翔(民99)。氧化鋅透明導電薄膜特性之研究。南榮技術學院工程科技研究所。
陳怡誠。高介電薄膜簡介。交通大學電子研究所碩士。
彭成鑑〝強介電陶瓷材料在動態隨機記憶體上的應用〞,工業材料, 107 期, P72,民84.國立編譯館,“電子陶瓷材料",徐氏基金會,(1989),136。
劉台徽 "Giga bit DRAM 世代的High-k 材料的最新技術動向", 電子月刊, 7 卷,9 期, p166。
B. Y. Kim, H. F. Luan and D. L. Kwong, “Ultra Thin (<3nm) High Quality Nitride/Oxide Stack Gate Dielectrics Fabricated by In-Situ Rapid Thermal
Processing,” IEDM Tech. Dig., (1997), 463.
C. H. Ng, and S. F. Chu, IEEE Electron Device Lett.,vol. 23, pp.529, 2002.
C. Y. Sze and J. Y. Lee, “The Electrical Characteristics of MFI S for Non-volatile Memory Application,” SIMC-XI 2000.
Chunxiang Zhu, Hang Hu, Xiongfei Yu, SJ Kim, A lbert Chin, M. F.Li, Byung Jin Cho, D, L. Kwong,”Voltage and Temperatuer Dependence of Capacitance of High-K HfO2 MIM Capacitors: A Unified Understanding and Prediction,” in IEDM Tech.
Dig.,2003,pp.879-882.
E. Janczak-Bienk, H. Jensen and G. Sorensen, “The influence of the Reactive Gas Flow on the Properties of AlN Sputter-Deposited Films,” Mater. Sci. and Eng.,
A140(1991), 696.
F. Rubio, J. M. Albella, and J. M. Martinz- Duart, “Sputtered Ta2O5 antireflection coatings for silicon cells,” Thin Solid Film, (1981), 405.
F. Rubio, J. M. Albella, and J. M. Martinz- Duart, “Sputtered Ta2O5 antireflection coatings for silicon cells,” Thin Solid Film, (1981), 405.
Fujishima A,Honda K.Electrochemical Photolysis of Water at a Semi— conducting
Electrode[J].Nature,1972,238(5358):37—38.
F. Shinoki and A. Itoh, “Mechanism of RF reactive sputtering,” J. Appl. Phys., 46(1975), 3381.
Hang Hu, Chunxiang Zhu, Y. F. Lu, Y. H. Wu, T. Liew, M.F. Li, B.J. Cho, W. K. Choi, and N. Yakovlev, “Physical and electrical characterization of HfO2 metal-insulator-metal capacitors of Si analog circuit application,” JOURNAL OF APPLIED PHYSICS, VOLUME 94, NUMBER 1, 1 JULY 2003.
H.-J. Cho, C. S. Kang, K. Onishi, S. Gopalan, R. Nieh, R. Choi, E. Dharmarajan and J.C. Lee, “Novel nitrogen profile engineering for improved TaN/HfO2 Si MOSFET
performance,” IEDM Tech. Dig., (2001), 30.2.1.
I. Brain and O. Knacke , “Thermochemical properties of inorganic substances,” Springer , Berlin, (1973).
I. Brain and O. Knacke , “Thermochemical properties of inorganic substances,” Springer , Berlin, (1973).
K. W. Kwon, C. S. Kang, H. K. Kang, and S. T. Ahn, “Thermally Robu Transaction on
Electron Devices, vol. 43, no. 6, Junel 1996 ].
K. W. Kwon, C. S. Kang, S. O. Park etc., “Thermally robust Ta2O5 capacitor for the 256-Mbit DRAM,” IEEE transactions on Electron Devices, (1996), 919.
L. Yinyin, T. Ting-ao, L. Yun, H. Weining, J. Guobao, “Fabrication and characteristics of Au/Cr/PZT/PT/Ti/ZrO2/Si structure foMFMIS FET application,” Solid-State and Integrated-Circuit Tec.
L. B. Pankratz, “Thermodynamic Properties of Elements and Oxides (U.S. Dept. of
Interior,” Bureau of Mines Bulletin 672, U.S. Govt. Printing Office, Washington,D.C., 1982).
L. B. Pankratz, “Thermodynamic Properties of Elements and Oxides (U.S. Dept. of
Interior,” Bureau of Mines Bulletin 672, U.S. Govt. Printing Office, Washington,
D.C., 1982).
L. Kang, K. Onishi, Y. Jeon, B. H. Lee, C. Kang, W.-J. Qi, R. Nieh, S. Gopalan, R. Choi, and J. C. Lee, ”MOSFET devices with polysilicon on single-layer HfO2 high-K dielectrics,” IEDM Tech. Dig., (2000), 35.
Lyaaght, P.S.; Foran, B.; Bersuker, G.; Tichy, R.; Larson, L.; Murto, R.W.; Huff, H.R, “Physical characterization of high-k gate dielectric film systems processed by RTA and spike anneal,” Advanced Thermal Processing of Semiconductors, (2002). RTP 2002. 10th IEEE International Conference, (2002), 93.
S. B. Chen, C. H. Lai, A. Chin, J. C. Hsieh, and J. Liu, “High-density MIM capacitors using Al2O3 and AlTiO dielect trics,” IEEE Electron Device Lett., vol. 23, pp. 185–187, Apr. 2002.
S. Kobayashi, K. Amanuma, and H. Hada, “Effect of Interconnect Layer on Pb(Zr, Ti)O3 Thin Film Capacitor Degradation,” IEEE Electron Device Letters, vol. 19, no. 11, Nov. 1998.
S. P. Murarka, Silicides for VLSI Applications (Academic, New York, 1983).
S. Kamiyama, T. Saeki, H. Mori, Y. Numasawa, “Ta2O5 plasma CVD technology for
DRAM stacked capacitors,” IEDM Tech. Dig., (1991), 827.
S. P. Murarka, Silicides for VLSI Applications (Academic, New York, 1983).
S. J. Lee, H. F. Luan, W. P. Bai, C. H. Lee, T. S. Jeon, Y. Senzaki, D. Roberts, and D. L. Kwong, “High quality ultra thin CVD HfO2 gate stack with poly-Si gate electrode,” IEDM Tech. Dig., (2000), 31.
Xiongfei Yu, Chu nxiang Zhu, Member, IEEE, Hang Hu, Albert Chin,Senior Member,
IEEE, M. F. Li Senior Member, IEEE, Byung Jin Cho, Senior Member, IEEE,
Dim-Lee Kwong, P. D. Foo, and Ming Bin Yu,”A High- Density MIM Capacitor (13fF/μm) Using ALD HfO2 Dielectrics,” IEEE ELECTRON DEVICE LETTERS, VOL. 24, NO. 2, FEBRUARY 2003.
Y. Nakagawa, Y. Gomi, and T. Okada, American Institute of Physics, J. Appl. Phys.,
(1987), 5012.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔