跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 15:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳明輝
研究生(外文):Chen, Ming Hui
論文名稱:轉子軸承系統不平衡之測量與識別
論文名稱(外文):Measurement and Identification for the Unbalance of a Rotor Bearing System
指導教授:胡穗樂胡穗樂引用關係
指導教授(外文):Suey-Yueh Hu
口試委員:夏紹毅, 黃俊榮
口試日期:2012-06-29
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:輪機工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:60
中文關鍵詞:轉子軸承系統
外文關鍵詞:Rotor-Bearing System
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:0
轉子機械上因不同的運轉條件所造成的損傷也不同,透過振動的監控量測可以用來定性與定量的識別損傷情形。本論文研究的目標在以發展一簡單可行,又具有相當精確度的不平衡量識別方法,過程中以最基本的Jeffcot rotor來建立其轉子系統的數學計算模型,透過Matlab/Simulink軟體的協助,可將繁複的數學模型轉化成簡單的圖形控制方式,來獲得轉子的振動量數值分析結果;之後建置單軸單轉子雙軸承的簡化版轉動機械,由預先設定的轉子不平衡量所獲得的震動測量結果,輸入並與數值分析結果進行迴歸分析,進而判斷出不平衡量的大小與相位。
研究結果顯示,以不同轉速的情形來說,偏心量的識別結果誤差低於25%;在不同的偏心量以定轉速來進行識別,則識別偏心量平均約有7.82%的誤差。雖然實驗上仍存在有些許的不確定性,但以此方法在轉子不平衡量與相位的識別上應該是有相當準確的結果。

關鍵字 : 轉子軸承系統、偏心量、非線性迴歸分析

For rotor machinery, the different defect is induced at the different operation condition. However, it can be identified qualitatively and quantitatively by monitoring the machine vibration and suitable prediction method. In this paper, the simple, feasible and accurate identification process is developed to obtain the unbalance of the rotor system. First, the mathematical model of Jeffcott rotor is chosen to be the based model. Using the Matlab/Simulink software, the complicated programming for deriving the vibrating characteristics can be transformed to the graphical model. At the same time, the experiment data is measured from the single rotor bearing test instrument and conducted to the Matlab program. Finally, the unbalance of rotor is predicted by the nonlinear regression analysis.
The numerical errors of rotor eccentricity between the adopted method (experiment data) and theoretical model are less than 25% in the various rotor speeds. For the different rotor eccentricity, the average numerical error is only 7.82%. It is shown that good accuracy and feasibility is provided in this process, and the method may be concerned to industry implementation.

Keywords:Rotor-Bearing System, Eccentricity, Nonlinear Regression Analysis

摘 要 I
Abstract II
誌 謝 III
目 錄 IV
圖目錄 VI
表目錄 IX
第一章 前言 1
1.1 研究動機與目的 2
1.2 研究問題 3
1.3 研究方法 3
1.4 研究限制 4
1.5 論文大綱 4
1.6 專有名詞 5
第二章 文獻回顧 8
第三章 轉子-軸承系統數值模型 15
3.1 Jeffcott轉子系統數學模型 15
3.2 以Matlab/Simulink進行動態特性分析 18
第四章 實驗建置與測量 28
4.1 轉子試驗機台 30
4.2 轉動控制系統 32
4.3 LVDT位移計 34
4.4 資料擷取卡 35
4.5 使用軟體 37
第五章 轉子不平衡量與相位的判別 43
5.1 不同轉速時識別的準確度 55
5.2 不同偏心量時識別的準確度 56
第六章 結論 57
參考文獻 58

[1]N. O. Myklestad, “A new method of calculating natural modes uncoupled bending vibration of airplane wings and other types of beams,” Journal of the Aeronautical Sciences, Vol. 11(2), pp.153-162, 1944.
[2]R. L. Ruh1, and J. F. Booker, “A Finite Element Model for Distributed Parameter Turborotor Systems,” ASME Journal of Engineering for Industry, Vol. 94, pp.126-132, 1972.
[3]H.D. Nelson and J. M. Mcvaugh , “The dynamics of rotor bearing systems using finite elements, Transactions of the ASME, ” Journal of Engineering for Industry 98, pp.593-600, 1976.
[4]R. Firoozian and H. Zhu, “A hybrid method for the vibration analysis of rotor-bearing systems,” Proceedings of the Institution of Mechanical Engineers, Part C 205, pp.131-137, 1991.
[5]R.W. Stephenson, and K. E. Rouch., “Generating Matrices of the Foundation Structure of a Rotor System Form Test Data,” Journal of Sound and Vibration, Vol. 154, No. 3, pp.467-484, 1992.
[6]H. Q. Qing and X. M. Cheng, “Coupled torsional-flexural vibration of shaft systems in mechanical engineering-I. Finite Element Model,” Computers & Structures 58, pp.835-843, 1996.
[7]T. D. Shook, and R. S. R. Gorla, “Finite Element Analysis and Redesign of a Compressor Hub Spinner,” Finite Elements in Analysis and Design, Vol. 28, No. 1, pp.19-31, 1997.
[8]A. S. Sekhar, P. Balaji Prasad, “Dynamic analysis of a rotor system considering a slant crack in the shaft,” Journal of Sound and Vibration, Vol. 208, Issue 3, pp.457-473, 1997.
[9]Jonas Fischer, Jens Strackeljan, “FEM-Simulation and stability analyses of high speed rotor systems,” 7th IFToMM-Conference on Rotor Dynamics, Vienna, Austria, pp. 25-28, September 2006.
[10]Matti Rantatalo, Jan-Olov Aidanpää, Bo Göransson, Peter Norman, “Milling machine spindle analysis using FEM and non-contact spindle excitation and response measurement,” International Journal of Machine Tools and Manufacture, Vol. 47, Issues 7-8, pp. 1034-1045, June 2007.
[11]Chris A. Papadopoulos, Pantelis G. Nikolakopoulos, George D. Gounaris, “Identification of clearances and stability analysis for a rotor-journal bearing system,” Mechanism and Machine Theory, Vol. 43, Issue 4, pp. 411-426, April 2008.
[12]A.L. Rodrigues, A.J. Pires January, “Reluctance machines incorporating high temperature superconducting materials on the rotor,” Physica C: Superconductivity, Vol. 470, Issue 2, pp. 98-103, 15 January 2010.
[13] R. Markert, R. Platz, M.Seidler, “Model Based Fault Identification in Rotor Systems by Least Squares Fitting, International Journal of Rotating Machinery, vol. 7(5), pp.311-321, 2001.
[14] A.S.Sekhar, “Identification of Unbalance and Crack Acting Simultaneously in a Rotor System: Modal Expansion versus Reduced Basis Dynamic Expansion,” Journal of Vibration and Control, Vol. 11 (9), pp. 1125–1145, 2005.
[15] P.Pennacchi, A.Vania, “Diagnosis and Model Based Identification of a Coupling Misalignment,” Shock and Vibration, Vol. 12 (4), pp. 293–308, 2005.
[16] R. Isermann, “Model-Based Fault Detection and Diagnosis Status and Applications,” Annual Reviews in Control, Vol. 29, pp.71–85, 2005.
[17] A. W. Lees, J. K. Sinha, M. I. Friswell, “Model-Based Identification of Rotating Machines,” Mechanical Systems and Signal Processing, vol. 23 (6), pp. 1884–1893, 2009.
[18] A. K. Jalan, A. R. Mohanty, “Model Based Fault Diagnosis of a Rotor-Bearing System for Misalignment and Unbalance under Steady-State Condition,” Journal of Sound and Vibration, vol. 327, pp. 604–622, 2009.
[19] G. N. D. S. Sudhakar, A. S. Sekhar, “Identification of Unbalance in a Rotor Bearing System,” Journal of Sound and Vibration, Vol. 330, pp. 2299–2313, 2011.
[20] W. J. Chen & E. J. Gunter, Introduction to Dynamics of Rotor-Bearing Systems, Concepts NREC, 2005.
[21] 李新凱,“以有限元素法分析不平衡轉子之激振特性-以食品工廠用空壓機為例”,永達技術學院碩士論文,2011。
[22] G. A. F. Seber and C. J. Wild, Nonlinear Regression, 2nd Edition, John Wiley & Sons, 2006.
[23] 楊國安,”轉子動平衡實用技術”,中國石化出版社。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top