跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/16 22:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝燿隆
研究生(外文):Yao-lung Hsieh
論文名稱:Fe/TiO2結合微波誘導降解含氯有機物之研究-C6H5Cl和C2Cl4
論文名稱(外文):Microwave-Induced Degradation of Chlorinated Organic Componds By Using Fe Coated TiO2 - C6H5Cl and C2Cl4
指導教授:周志儒周志儒引用關係
指導教授(外文):Chih-Ju G. Jou
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:環境與安全衛生工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:97
中文關鍵詞:水熱法Fe/TiO2微波氯苯四氯乙烯活化能
外文關鍵詞:ChlorobenzeneMicrowaveFe/TiO2Hydrothermal methodActivation EnergyTetrachloroethene
相關次數:
  • 被引用被引用:2
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以水熱法製備Fe摻混在TiO2上,利用微波能量作為光催化處理技術之光源,藉由微波光化作用使其達到氧化還原之效應。定溫試驗中,在氯苯溶液反應溫度在30 ℃、40 ℃、50 ℃、60 ℃條件下,降解率為10.31%、15.63%、16.71%、20.43%;在常溫狀態下,隨著溫度增加,有較高的去除效率;乃是反應溶液溫度的升高,使得分子的動能增加,單位時間內碰撞的次數增加,使去除率得以提升。定溫降解反應下,活化能為14.40(kJ/mole)。另一方面,在不同微波功率,氯苯去除率會隨微波功率增加而提升,在30W微波功率3.5wt% Fe/TiO2的去除率為20.63%;微波功率150W時,去除效率提升至58.72%,活化能從48.8kJ/mole(30W)降至9.6kJ/mole(150W)。於不同微波介質下,微波功率150W,總照射時間300秒,氯苯去除率依序為3.5wt% Fe/TiO2 (58.72%)>1.4wt% Fe/TiO2(53.29%)>0.7wt% Fe/TiO2 (51.76%)>Fe0(46.84%)>0.35wt% Fe/TiO2(43.55%)>TiO2(37.67%),顯示鐵含量增加,可以抑制電子-電洞對再結合,增加氫氧自由基,促使污染物去除率上升;且微波功率由30W提升至150W,去除率由20.63%,提升為58.72%,證明微波功率有效提供給TiO2,微波能量的增加,使TiO2產生更多的電子電洞對。另於定溫60℃及微波瓦數150W下,四氯乙烯的去除效率皆比氯苯要好,顯示降解環狀污染物(氯苯)所需之能量要比降解直鏈汙染物(四氯乙烯)之能量要大。結果證明微波能量,可以在短時間內,有效的降解含氯有機物。
In this study, Fe coated TiO2 powders were synthesized using the hydrothermal method. The powders were used as catalyst for decomposing chlorobenzene (CB) and tetrachloroethene (PCE) under microwave irradiation. When the reaction temperature for chlorobenzene in aqueous solution is kept at 30℃,40 ℃,50 ℃ and 60℃,the degradation rate is 10.31%、15.63%、16.71%、20.43% ,respectively. This is because increase of reaction temperature in aqueous solution will enhance the molecular kinetic energy and the number of collision per unit time; thus, lead to a higher removal rate. In test of constant temperature, the degradation chlorobenzene of activation energy is 14.40 kJ/mole. In other side, when raising the microwave energy can lead the degradation rate of CB increased. In 30 watts and 150 watts, the degradation rate of CB is 20.63% and 58.72%, the activation energy is from 48.8kJ/mole reduced to 9.6kJ/mole. Indicate that the microwave power can be effectively provided to the TiO2. Increasing the microwave energy can make TiO2 generating more hole-electron pairs. In different catalytic mediums under microwave energy, 150 watts, after 300 seconds, the degradation rate of CB is 3.5wt% Fe/TiO2 (58.72%)>1.4wt% Fe/TiO2(53.29%)>0.7wt% Fe/TiO2 (51.76%)>Fe0(46.84%)>0.35wt% Fe/TiO2(43.55%)>TiO2(37.67%). As the results, the existence of Fe can prevent hole-electron recombination and increase in the total amounts of hydroxyl radicals. In the constant temperature of 60 ℃ and in 150 watts condition, the degradation rate of PCE is better than CB. Because the degradation energy of the ring-chain pollutants is greater than the straight-chain. Under microwave irradiation, using Fe/TiO2 to decompose chloro-containing organic substances is proven to be an effective technology.
中文摘要 I
英文摘要 II
誌謝 IV
目錄 V
表目錄 IX
圖目錄 X
一、緒論 1
1-1前言 1
1-2研究動機 3
1-3研究目的 3
二、文獻回顧 4
2-1含氯有機物 4
2-1-1污染現況 4
2-1-2氯苯之物化特性 5
2-1-2-1氯苯對人體健康與環境危害的影響 6
2-1-3四氯乙烯之物化特性 6
2-1-3-1四氯乙烯對人體健康與環境危害的影響 8
2-2含氯有機污染物處理技術 9
2-2-1氣提法(Stripping) 9
2-2-2熱處理法(Heat treating) 9
2-2-3生物分解法 9
2-2-4高等氧化化學法 10
2-2-5吸附法 10
2-2-6可見光還原脫氯法 11
2-2-7微波降解法 11
2-3零價鐵(Zero-Valent Iron,ZVI) 12
2-3-1零價鐵還原脫氯基本原理 12
2-3-1-1零價鐵降解反應機制 12
2-3-1-2零價鐵脫氯還原模式 13
2-3-2零價鐵降解之影響因子 15
2-3-2-1溶氧 15
2-3-2-2溫度 15
2-3-2-3 pH 16
2-3-2-4初始濃度 16
2-4二氧化鈦 17
2-4-1 二氧化鈦之構造及物化特性 17
2-4-2 二氧化鈦之製備 19
2-5水熱法 21
2-5-1水熱法原理 22
2-5-2水熱法機制 22
2-5-3水熱法優缺點 24
2-6微波 26
2-6-1微波理論 26
2-6-2微波介質材料 26
2-6-3影響介質吸收微波因素 27
2-6-4微波機制 28
2-6-5微波加熱特性 29
2-6-6微波與傳統加熱之差異 30
2-6-7微波應用 30
三、材料與方法 32
3-1研究架構與方法 32
3-1-1研究架構 32
3-1-2研究方法 34
3-1-2-1水熱法合成鐵摻混二氧化鈦 34
3-1-2-2頂空法 35
3-2研究材料與設備 36
3-2-1研究材料 36
3-2-2研究設備 37
3-2-3 GC/MS設定條件 37
3-2-4實驗設備儀器 38
3-3研究方法 39
3-3-1氯苯、四氯乙烯溶液配製 39
3-3-2 Fe/TiO2之製備 39
3-4基礎試驗 40
3-4-1不同溫度對Fe/TiO2降解氯苯之試驗 40
3-5微波光化試驗 40
3-5-1不同微波功率下溶液溫度變化 40
3-5-2不同微波功率對於Fe/TiO2降解氯苯之試驗 40
3-5-3比較不同微波介質試驗對於降解氯苯之試驗 40
3-6觸媒結構鑑定 41
3-6-1 X-ray繞射分析儀(X-ray Powder Diffraction, XRD) 41
3-6-2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 41
3-6-3 紅外線光譜儀 (IR) 42
3-6-4 GC/MS 分析之品質保證與品質管制 42
四、結果與討論 43
4-1觸媒結構鑑定 43
4-1-1 X光繞射分析 43
4-1-2掃描式電子顯微鏡(SEM) 45
4-2基礎試驗 49
4-2-1純水在不同微波瓦數下之溫度變化 49
4-2-2 不同介質受相同微波瓦數(30W)照射下溫度變化 50
4-2-3定溫降解氯苯之空白試驗 52
4-2-4 微波降解氯苯之空白試驗 52
4-3 比較不同觸媒對降解水中氯苯之影響 54
4-4定溫降解試驗 56
4-4-1比較不同溫度對3.5wt% Fe/TiO2降解水中氯苯之影響及活化能 56
4-4-2 比較於定溫60℃下,3.5wt% Fe/TiO2降解水中氯苯與四氯乙烯之差異 60
4-5 微波降解試驗 62
4-5-1 比較不同微波瓦數對於3.5wt% Fe/TiO2降解水中氯苯之影響 62
4-5-2 比較微波瓦數150W下對於3.5wt% Fe/TiO2降解氯苯與四氯乙烯之影響 66
4-6 傅立葉紅外線光譜儀(FTIR)與氣相層析儀(GC/MS)之尾氣分析 68
4-6-1 推估降解氯苯與四氯乙烯之反應機制 72
五、結論與建議 74
5-1結論 74
5-2建議 76
六、參考文獻 77
Ai, Z., Yang, P., Lu, X., “Degradation of 4-chlorophenol by a microwave assisted photocatalysis method”, Journal of Hazardous Materials, vol. B124, pp.147-152 (2005).
A.Erto, A. Lancia, D. Musmarra. “A modelling analysis of PCE/TCE mixture adsorption based on Ideal Adsorbed Solution Theory”, Separation and Purification Technology , vol.80 , pp.140-147. (2011).
Benitez, F.J., Jesus, B.H., Gonzalez, T., and Real, F., “Photooxidation of carbofuran by a polychromatic UV irradiation without and with hydrogen peroxide”, Industrial & Engineering Chemistry Research, 34, pp. 4099-4105 (1995).
Borkar, S.A., Dharwadkar, S.R.,“Effect of microwave processing on polymorphic transformation of TiO2”, Ceramics International, 30, pp. 509-514 (2004).
Clark, II, C.J., Rao, P.S.C., Annable, M.D., “Degradation of perchloroethylene in cosolvent solutions by zero-valent iron”, Journal of Hazardous Materials, vol. B96, pp.65-78 (2003).
Cui, C., Quan, X., Chen, S., Zhao, H. “Adsorption and electrocatalytic dechlorination of pentachlorophenol on palladium-loaded activated carbon fibers”, Separation and Purification Technology, vol. 47, pp.73-79. (2005).
Choi, H., Stathatos, E., Dionysiou, D.D.,“Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems”, Desalination, 202, pp. 199–206 (2007).
Dindar, B., Içli, S.,“Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight”, Journal of Photochemistry and Photobiology A: Chemistry, 140, pp. 263–268 (2001).
D. A. Jones, T.P. Lelyveld, S.D. Mavrofidis, S.W. Kingman , N.J. Miles, “Microwave heating applications in environmental engineering-a review, Resources”, Conservation and Recycling 34 , pp.75-90. (2002).
Galema, S.A., “Microwave chemistry”, Chemical Society Reviews, 26, pp.233-238 (1997).
Gouvêa, C.A.K., Wypych, F., Moraes, S.G.., Durán, N., Nagata, N., Peralta-Zamora, P.,“Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution”, Chemosphere, 40, pp. 433-440 (2000).
Geiger, C. L., C. Clausen, R. W. DeVor, K.M .Milum ,C. A. Clausen ,and J. W. Quinn, “Remediation of DNAPL and Heavy Metal Contamination Using Emulsified Zero-Valent Metal Particles”, Enviro Nano , pp.15-30. (2006)
Gao, Z., Yang, S., Sun, C., Hong, J.,“Microwave assisted photocatalytic degradation of pentachlorophenol in aqueous TiO2 nanotubes suspension”, Separation and Purification Technology, 58, pp. 24–31 (2007).
Gao, Z., Yang, S., Ta, N., Sun, C., “Microwave assisted rapid and complete degradation of atrazine using TiO2 nanotube photocatalyst suspensions”, Journal of Hazardous Materials, 145, pp. 424–430 (2007).
Ganesh K. Parshetti, Ruey-an Doong., “Synergistic effect of nickel ions on the coupled dechlorinatio of trichloroethylene and 2,4-dichlorophenol by Fe/TiO2 nanocomposites in the presence of UV light under anoxic conditions”, Water Research, vol.45,pp.4198-4210 (2011).
Hoffmann, M.R., Martin S.T., Choi, W., and Bahnemannt, D.W., “Environmental applications of semiconductor photocatalysis”, Chemical Reviews, 95, pp.69–96 (1995).
Hűgűl, M., Boz, I., Apak, R.,“Photocatalytic decomposition of 4-chlorophenol over oxide catalysts”, Journal of Hazardous Materials B, 64, pp.313–322 (1999).
H. S Ku, F. Siu, E. Siores, J.A.R Ball, A.S Blicblau, “Applications of fixed and variable frequency microwave (VFM) facilities in polymeric materials prcessing and joining”, Journal of Materials Processing Technology 113, pp. 184-188. (2001).
Horikoshi, S., Hidaka, H., Serpone, N.,“Environmental remediation by an integrated microwave/UV-illumination method II. Characteristics of a novel UV–VIS–microwave integrated irradiation device in photodegradation processes”, Journal of Photochemistry and Photobiology A: Chemistry, 153, 2002, pp. 185–189 (2002).
Horikoshi, S., Hidaka, H., Serpone, N., “Hydroxyl radicals in microwave photocatalysis Enhanced formation of OH radicals probed by ESR techniques in microwave-assisted photocatalysis in aqueous TiO2 dispersions”, Chemical Physics Letters, 376, pp. 475–480 (2003).
Hong, J., Sun, C., Yang, S.G., Liu, Y.Z., “Photocatalytic degradation of methylene blue in TiO2 aqueous suspensions using microwave powered electrodeless discharge lamps”, Journal of Hazardous Materials B, 133, pp. 162–166(2006).
Hsieh, W.P., Pan, J.R., Huang, C.P., Su, Y.C., Juang, Y.J., “Enhance the photocatalytic activity for the degradation of organic contaminants in water by incorporating TiO2 with zero-valent iron. ” Science of the Total Environment ,408 ,pp.672-679 (2010).
J. O. Eckert, C. C. H. Houston, B. L. Gersten, M. M. Lencka, and R. E. Riman, “Kinetics and Mechanisms of Hydrothermal Synthesis of Barium Titanate,” Journal of the American Ceramic Society, 90 [1] , pp.311-314 (1996).
Jardim, W.F., Moreaes, S.G. and Takiyama, M.M.K., “Photocatalytic degradation of aromatic chlorinated compounds using TiO2:toxicity of intermediates”, Water Reseaech, 31, No. 7, pp. 1728-1732 (1997)
Jou, C.J.G..,“Application of activated carbon in a microwave radiation field to treat trichloroethylene”, Carbon, 36, pp.1643-1648. (1998).
Janda, V., Vasek, P., Bizova, J., Belohlav, Z., “Kinetic models for volatile chlorinated hydrocarbons removal by zero-valent iron”, Chemosphere, 54, pp.917-925 (2004)
Jou, C.J.G.., “An efficient technology to treat heavy metal-lead- contaminated soil by microwave radiation”, Journal of Environmental Management, 78, pp.1–4 (2006)..
Jou, C.J.G., Lee, C.L., Tsai, C.H., Wang, H.P., “Microwave-assisted photocatalytic degradation of trichloroethylene using titanium dioxide”, Environmental Engineering Science, 25, pp. 975-980 (2008).
Jou, C.J., “Degradation of pentachlorophenol with zero-valence iron coupled with microwave energy”, Journal of Hazardous Materials, 152, pp. 699–702 (2008a)
Jou, C.J., Wu, C.R., “Granular activated carbon coupled with microwave energy for treating pentachlorophenol- containing wastewater”, Environmental Progress, 27, pp.111-116 (2008b)
Jou, C.J.G., Lee, C.L., Tsai, C.H., Wang, H.P., “Microwave-assisted photocatalytic degradation of trichloroethylene using titanium dioxide”, Environmental Engineering Science, 25, pp. 975-980 (2008c).
Jou, C.J. G., Wu, C.R., Lee, C.L.,“Application of microwave energy to rreat granular activated carbon contaminated with chlorobenzene”, Environmental Progress, (2009)
Jou, C.J. G, Hsieh, S.C., Lee, C.L., Lin, C., Huang, H.W.,“Combining zero-valent iron nanoparticles with microwave energy to treat chlorobenzene”, Journal of the Taiwan Institute of Chemical Engineers, 41, pp.216–220 (2010).
Konstantinou, I.K., Albanis, T.A., “TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations A review”, Applied Catalysis B: Environmental, 49, pp. 1–14 (2004)
K. Byrappa*, T. Adschiri , “Hydrothermal technology for nanotechnology. ” Progress in Crystal Growth and Characterization of Materials,53,pp. 117-166 (2007).
Kumar, S., Sharma, D.R., Thakur, N., Negi, N.S., Rangra, V.S., “Molecular associations in binary mixtures of pyridine and chlorobenzene in benzene solution using microwave absorption data”, Journal of Molecular Liquids, 130, pp.70-73 (2007)
Lakshmi, S., Renganathan, R., Fujita, S.,“Study on TiO2-mediated photocatalytic degradation of methylene blue”, Journal of Photochemistry and Photobiology A: Chemistry , 88 , pp. 163–167 (1995).
Liu, Y., Luo, M., Wei, Z., Xin, Q., Ying, P., Li, C.,“Catalytic oxidation of chlorobenzene on supported manganese oxide catalysts”, Applied Catalysis B: Environmental, 29, pp. 61–67 (2001).
Lee, B.Y., Park S.H., Kang M., Lee S.C., Choung S.J.,“Preparation of Al/TiO2 nanometer photo-catalyst film and the effect of H2O addition on photo-catalytic performance for benzene removal”, Applied Catalysis A: General, 253, pp. 371-380 (2003).
Lin, C.J., Lo, S.L., Liou, Y.H., “Dechlorination of trichloroethylene in aqueous solution by noble metal-modified iron”, Journal of Hazardous Materials, vol. B116, pp.219-228 (2004).
Lien, H. L., and H. T. Su, “Promoter Effect of Aluminum Oxide on Enhanced Hydrodechlorination of Carbon Tetrachloride with Zero-Valent Aluminum ”, Journal of the Chinese Institute of Environmental Engineering, Vol. 14, pp 261-267. (2004).
Lin, C.J., Lo, S.L., Liou, Y.H., “Degradation of aqueous carbon tetrachloride by nanoscale zerovalent copper on a cation resin”, Chemosphere, vol. 59, pp.1299-1307 (2005).
Lin, C.J., Lo, S.L., “Effects of iron surface pretreatment on sorption and reduction kinetics of trichloroethylene in a closed batch system”, Water Research, vol. 39, pp.1037-1046 (2005).
Lien, H.L., Zhang, W. X., “Hydrodechlorination of Chlorinated Ethanes by Nanoscale Pd/Fe Bimetallic Particles”, Journal of Environment Engineering, vol. 9 pp.4-10. (2005).
Matheson, L. J., and P. G. Tratnyek, , “Reductive dehalogenation of chlorinated methanes by iron metal”, Environmental Science and Technology 28, pp. 2045-2053.(1994).
Mavrogianopoulos, G.N., Frangoudakis, A., Pandelakis, J., “Energy efficient soil disinfestation by microwaves”, Journal of Agricultural Engineering Research, 75, pp. 149–153 (2000)
Musić, S., Gotić, M., Ivanda, M., Popović, S., Turković, A., Trojko, R., Sekulić, A., Furić, K., “Chemical and microstructural properties of TiO2 synthesized by sol-gel procedure”, Materials Science and Engineering B, 47, pp. 33–40 (1997).
M. S. Venkatesh1, G. S. V. Raghavan, “An overview of microwave processing and dielectric properties of agri-food materials”, Biosystems Engineering 88 , pp. 1-18. (2004).
Mohseni, M. “Gas phase trichloroethylene (TCE) photooxidation and byproduct formation: photolysis vs. titania/silica based photocatalysis”, Chemosphere, vol. 59, pp.335-342. (2005).
M.I. Cervera, J. Beltran, F.J. Lopez, F. Hernandez “Determination of volatile organic compounds in water by head space-solid-phase microextraction gas chromatography coupled to tandem mass spectrometry with triple quadrupole analyzer” , Analytica Chimica Acta,vol.704,pp.87-97. (2011).
Parida, K.M., Parija S.,“Photocatalytic degradation of phenol under solar radiation using microwave irradiated zinc oxide”, Solar Energy , 80, pp. 1048–1054 (2006).
Patel, U., Suresh, S. “Dechlorination of chlorophenols by magnesium–silver bimetallic system”, Journal of Colloid and Interface Science, vol. 299, pp.249-259. (2006).
Sobczyński, A., Duczmal, Ł., Zmudziński, W., “Phenol destruction by photocatalysis on TiO2:an attempt to solve the reaction mechanism” , Journal of Molecular Catalysis A:Chemical, 213, pp. 225–230 (2004).
T. Sugimoto, “Preparation of Monodispersed Colloidal Particles,” Advances in Colloid and Interface Science, 28,pp. 65-108 (1987).
Tsukamoto, H., Araki, K., Tanimura, T., Tejedor-Tejedor, I., Anderson, M.A., Yamazaki S.,“Photocatalytic degradation of gaseous tetrachloroethylene on porous TiO2 pellets”, Applied Catalysis B: Environmental, 33 , pp. 109–117 (2001)
Takashima, H., Ren, L., Kanno, Y., “Catalytic decomposition of TCE under microwave”, Catalysis Communications, 5, pp. 317-319 (2004).
Tai, C., Jiang, G. “Dechlorination and destruction of 2,4,6-trichlorophenol andpentachlorophenol using hydrogen peroxide as the oxidant catalyzed by molybdate ions under basic condition”, Chemosphere, vol. 59, pp.321-326. (2005).
T. J. Appleton, R. I. Colder, S. W. Kingman, I. S. Lowndes, A. G. Read, “Microwave technology for energy-efficient processing of waste”, Applied Energy, vol. 81 pp.85-113. (2005).
Tanmay K. Ghorai , Soumya K. Biswas , Panchanan Pramanik, “Photooxidation of different organic dyes (RB, MO, TB, and BG) using Fe(III)-doped TiO2 nanophotocatalyst prepared by novel chemical method. ” Applied Surface Science,254,pp.7498-7504 (2008).
W. J. Dawson, “Hydrothermal Synthesis of Advanced Ceramic Powders.Ceram. ” Bull. 67,pp. 1673-1678 (1988).
Xiong, G., He, X., Zhang, Z. “Microwave-assisted extraction or saponification combined with microwave-assisted decomposition applied in pretreatment of soil or mussel samples for the determination of polychlorinated biphenyls”, Analytica Chimica Acta, vol. 413, pp.49-56. (2000).
Xu, X., Zhou, M., He, P., Hao, Z.,“Catalytic reduction of chlorinated and recalcitrant compounds in contaminated water”, Journal of Hazardous Materials B, 123 , pp. 89–93 (2005)
Yamazaki, S., Tsukamoto, H., Araki, K., Tanimura, T., Tejedor-Tejedor, I., Anderson, M.A., “Photocatalytic degradation of gaseous tetrachloroethylene on porous TiO2 pellets”, Applied Catalysis B: Environmental, vol. 33, pp.109-117 (2001).
Zheng, S., Huang, Q., Zhou, J., Wang, B., “A study on dye photoremoval in TiO2 suspension solution”, Journal of Photochemistry and Photobiology A: Chemistry, 108, pp. 235-238 (1997).
Zhang, W.X., Wang, C.B., Lien, H.L., “Treatment of chlorinated organic contaminants with nanoscale bimetallic particles”, Catalysis Today, vol. 40, pp.387-395 (1998).
Zhang, W. X., “Nanoscale Iron Particles for Environmental Remediation: An Overview”, Journal of Nanoparticle Research, Vol.5, pp.323-332 (2003).
Zhang, X., Li, G., Wang, Y., “Microwave assisted photocatalytic degradation of high concentration azo dye reactive brilliant red X-3B with microwave electrodeless lamp as light source”, Dyes and Pigments, 74, pp. 536–544 (2007).
李建利,微波誘導奈米零價鐵、銅及Cu/Fe雙金屬顆粒降解水中氯苯之反應機制,國立高雄第一科技大學環境與安全衛生工程學系,博士論文 (2009)
高嘉隆,協同水裂解產氫與有機物分解光催化反應之特性研究,國立高雄第一科技大學環境與安全衛生工程學系,碩士論文 (2009)
葉怡伶,微波誘導堇青石塗覆TiO2光降解氯苯之研究,國立高雄第一科技大學環境與安全衛生工程學系,碩士論文 (2010)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊