跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/01/29 10:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪賢修
研究生(外文):Sian-Siou Hong
論文名稱:雙根耦合自由樑結構之振動分析與減振
論文名稱(外文):Vibration Analysis and Suppression of Two Coupled Free-free Beam Structure
指導教授:李振榮李振榮引用關係
指導教授(外文):Chen-Jung Li
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:機械與自動化工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:127
中文關鍵詞:模態分析假設模態法雙根耦合自由樑有限元素分析
外文關鍵詞:Mode AnalysisFinite Element AnalysisAssume Mode MethodTwo Coupled Free-free Beam
相關次數:
  • 被引用被引用:0
  • 點閱點閱:280
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文以分析結構樑的模態形狀與自然頻率為主,以二根自由結構樑中間搭配數根耦合樑建立一套傳遞外力的數學模型,以推導結構系統振動樑的運動方程式與有限元素分析(Finite Element Analysis)搭配,研究結構樑的振動行為,並驗證其數學模型相對應的模態形狀與自然頻率。本文中介紹進行模態分析所需應用之數學理論,如:扭轉振動理論、多自由度振動系統、漢米爾頓原理、假設模態法等...。首先探討一具自由邊界條件的結構樑,中間加入不同數目的支承或耦合樑,探討側向模態的變化情形,進而加入外力刺激可藉由耦合樑將振動源傳遞至第二根樑上可推得系統的數學模型並可求解出系統的振動位移及加速度,透過耦合樑位置或結構尺寸調整可設計一個降低振動量與加速度的雙根耦合自由樑系統,避開模型的共振頻率,以達到減振的效果。本研究將此雙根耦合自由樑應用於工程分析的數學模型,以ANSYS模擬二輪車排氣管後叉連接系統之模型做驗證,利用扭轉振動理論與假設模態法可快速且準確得到此系統模型的自然頻率與加速度。研究結果發現,移動耦合樑位置對此系統模型加速度得到3%的改善,貢獻度並不大,但與理論預測相符合,本研究建議提高固定點耦合樑的彈性系數或降低系統模型的轉動慣量可大幅改善此系統加速度的方法,此設計方法可應用在工程結構的機械振動分析、減振分析、振動控制及動、靜態分析。
This work aims at analyzing the mode shape and natural frequency of structural beams, using two free beams and many coupling beams to build a mathematical model that transfers forces. With this mathematical model, the equation of motion of structural system vibrating beam can be derived, and Finite Element Analysis is employed as reference to further study the vibrating behavior of structural beam and to verify the mathematical model in terms of its mode shape and natural frequency. This work introduces the mathematical theory applied to mode analysis, including torsional vibration theory, multiple degree of freedom system , and Hamilton theory, assume mode method. To begin with, a beam with free boundary condition is analyzed, and then different numbers of bearings and coupling beams are added to investigate the changes of lateral mode. Additionally, upon the external stimuli added, it proves that vibrating source can be transferred to the second beam by coupling beams so as to derive system’s mathematical model and its vibration displacement and acceleration. With the displacement and size adjustment of coupling beams, two coupled free-free beam with the ability to lower the vibration and acceleration can be produced for successful vibration damping and avoidance of resonance frequency of the model. This two coupled free-free beam can also be applied to the mathematical model for engineering analysis. In order to verify Fork Connection System of motorcycle exhaust pipes, this work employs torsional vibration and assume mode method to quickly and precisely obtain its natural frequency and acceleration, while ANSYS is traditionally used as simulation to verify the mathematical model. The research results show insignificant 3% of improvement to acceleration due to the displacement of coupling beams, but the result matches the theory results. This work suggests the rise of Elasticity Coefficients at fixed points or the drop of Moment of Inertia of system model should be needed to improve the acceleration of system. In terms of engineering structure, this design method is applicable and effective to mechanical vibration analysis, damping analysis, vibration control, dynamic analysis and static analysis.
摘要 II
Abstract III
誌謝 V
目錄 VI
圖目錄 IX
表目錄 XII
符號說明 XIII
第一章 緒論 1
1-1 研究動機 1
1-2 文獻回顧 2
1-3 研究目的 11
1-4 本文貢獻 14
1-5 本文大綱 15
第二章 雙根耦合自由樑理論推導與模擬 16
2-1 連續樑理論 16
2-2 雙根耦合自由樑分析流程架構 20
2-3 不同支撐條件連續樑之振動響應分析 23
2-3-1 懸臂樑模態分析與頻率響應分析 23
2-3-2 簡支承懸臂樑模態分析與頻率響應分析 25
2-3-3 簡支樑模態分析與頻率響應分析 28
2-3-4 具二支撐彈簧連續樑的模態分析與頻率響應分析 31
2-3-5 連續樑模態函數的理論推導 35
2-3-6 樑的側向強制振動分析 39
2-4 ANSYS軟體模擬雙根耦合自由樑之模態與自然頻率 42
2-4-1 雙根耦合自由樑尺寸材料參數 43
2-4-2 ANSYS模擬條件設定與收斂性分析 45
2-4-3 剛性扭轉振動原理探討雙根耦合自由樑剛性模態 49
2-4-4 漢米爾頓原理探討雙根耦合自由樑側向模態 51
2-4-5 雙根耦合自由樑其他模態分析 56
第三章 單根樑與雙根樑系統理論結果與分析 60
3-1 單根樑在不同邊界條件下的模態與頻率響應分析 60
3-1-1 以MATLAB軟體模擬懸臂樑之模態函數與自然頻率 60
3-1-2 以MATLAB軟體模擬簡支承懸臂樑之模態函數與自然頻率 62
3-1-3 以MATLAB軟體模擬簡支樑之模態函數與自然頻率 64
3-1-4 以MATLAB軟體模擬二支撐彈簧連續樑之模態與自然頻率 66
3-2 雙根耦合自由樑理論之自然頻率結果分析 68
3-2-1 扭轉振動模態理論分析與ANSYS模擬結果比較 68
3-2-2 撓曲側向模態理論分析與ANSYS模擬結果比較 69
3-2-3 其他模態理論分析與ANSYS模擬結果比較 74
3-2-4 雙根耦合自由樑理論與模擬之自然頻率結果比較 79
第四章 雙根耦合自由樑模型之減振實例應用 83
4-1 二輪車數學模型之建立 83
4-2 多根耦合自由樑應用於二輪車減振模型 85
4-3 調整耦合樑位置之減振成效比較 98
第五章 結論與未來展望 107
5-1 結論 107
5-2 未來展望 108
參考文獻 109
[1]Inman, D. J., 2001, Engineering Vibrations, Prentice-Hall, America.
[2]William, J. P., 1944, MECHANICAL VIBRATION, WILEY, America.
[3]王柏村,1999,振動學,全華科技圖書股份有限公司,二版,台北。
[4]吳佳璋,2006,振動學,新文京開發出版股份有限公司,初版,台北。
[5]陳俊德,2000,離層對連續樑自由振動之影響,國立成功大學,碩士論文。
[6]林冠元,2000,結構受簡諧激振之外力預測,國立屏東科技大學,碩士論文。
[7]洪慶鐘,2008,加裝減振器之彈性樑振動分析,淡江大學,碩士論文。
[8]Steven, C., 2008, Applied Numerical Methods with MATLAB, McGraw-Hill, Singapore.
[9]J. P., William, 2011,MATLAB在工程上的應用,翁展翔,初版,McGraw-Hill,台北。
[10]Walter, D. P., 1994, STRESS, STRAIN, AND STRUCTURAL MATRICES, WILEY, America.
[11]Hartog, J. P., 1956, Mechanical Vibration, McGraw-Hill, New York.
[12]Brock, J. E., and Mo, S. L., 1946, “A note on the damped vibration absorber, Transaction of Mechanical Engineers”, Journal of Applied Mechanics, Vol. 13, pp. A-284.0
[13]Ormondroyd, J., and Hartog, J.P. D., 1928, “The theory of the dynamic vibration absorber, Transaction of Mechanical Engineers”, Journal of Applied Mechanics, Vol. 50, pp.9-22.
[14]Warburton, G. B., 1982, “Optimum absorber parameters for various combinations of response and excitation parameters” ,Journal of earthquake engineering and structural dynamics, Vol. 10, pp.381-401.
[15]吳佳璋,2010,“使用雙自由度吸振器的最佳化參數來抑制承受”,國立高雄海洋科技大學,碩士論文。
[16]Wu, J.-J., 2005, “Use of equivalent-damper method for free vibration analysis of a beam carrying multiple two degree-of-freedom spring–damper–mass systems”, Journal of Sound and Vibration, Vol. 281 , pp.275–293.
[17]Fasana, A., and Giorcelli, E., 2009, “A vibration absorber for motorcycle handles”, Springer Science and Business Media B.V., Vol. 10,pp.79–88.
[18]林勝國,2005,’’微機械雙端自由樑式高頻濾波器之研製’’,國立高雄第一科技大學,碩士輪文。
[19]Li, M.-H., 2012, “Mechanically Coupled CMOS-MEMS Free-Free Beam Resonator Arrays With Enhanced Power Handling Capability’’, IEEE International Conference, pp.346-357.
[20]Li, W.-L., 2012, “VIBRATIONS OF TWO BEAMS ELASTICALLY COUPLED TOGETHER AT ANARBITRARY ANGLE’’, ACTA MECHANICA SOLIDA SINICA, pp.62-72.
[21]Hsu, W.-T., Clark, J. R., and Nguyen, C. T.-C., 2001 “Q-optimized lateral free-free beam micromechanical resonators”, International Conference on Solid-State Sensors and Actuators, pp.1110-1113.
[22]康淵,2006,ANSYS進階,全華科技圖書股份有限公司,初版,台北。
[23]陳精一,2005,ANSYS振動學實務分析,高立圖書有限公司,初版,台北。
[24]Lai, H.-Y., Hsu, J.-C., Chen, C-K, 2008, “An innovative eigenvalue problem solver for free vibration of Euler_Bernoulli beam by using the Adomian decomposition method, Science Direct Elsevier Ltd, pp.3204-3220.
[25]Register, A. H., 1994, “A note on the vibrations of generally restrained, end-loaded beams’’, Journal of Sound and Vibration, Vol. 172 , pp.561-571.
[26]Naguleswaran, S., 2004, “Transverse vibration of an uniform Euler_Bernoulli beam under linearly varying axial force’’, Journal of Sound and Vibration, Vol. 275,pp. 47-57.
[27]金鑫,何玉林,杜靜,譚逢友,2006,“仿真技術在摩托車減振設計中的應用’’,重慶大學,頁1995-1998。
[28]Tian, Y.-G., Liu, J.-H., Wang, Y.-S., Xu, Z.-H., 2009, “Vibration modal analysis and hanger location optimization of automobile exhaust system’’, Journal of Liaoning Technical University, pp.995-998.
[29]Wang, Y.-S., Wu, W.-W., Liu, J.-H., 2010, “A New Technique for Hanger Positton Optimization of Vehicle Exhaust system’’, International Conference on Intelligence Computation Technology and Automation, pp.246-249.
[30]Meng, X.-J., Wu, G.-Q., He, L., 2009, “Numerical Study on the Vibration Character istics of Automobile Brake Diak and Pad’’, IEEE International Conference, pp.1798-1802.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊