(3.215.183.251) 您好!臺灣時間:2021/04/22 09:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林瑋翔
研究生(外文):Wei-Hsiang Lin
論文名稱:微波水熱合成法製備氧化鎳鈷及其於降解2-氯酚之應用
論文名稱(外文):Microwave-assisted hydrothermal synthesis of spinel nickel cobaltite and application to the degradation of 2-chlorophenol
指導教授:徐永源徐永源引用關係
指導教授(外文):Youn-Yuen Shu
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
中文關鍵詞:微波輔助氧化鎳鈷降解氯酚
外文關鍵詞:Microwave-assistedNiCo2O4DegradationChlorophenol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
觸媒輔助催化降解是關鍵的環境復育選擇之一,可以用來解決氯酚所造成之環境汙染物問題。本研究開發一種微波水熱合成氧化鎳鈷觸媒的方法,此方法包含下列兩步驟:第一步,混合硝酸鎳、硝酸鈷及尿素,溶於去離子水,以800瓦功率微波5分鐘。第二步,將過濾之氧化鎳鈷前驅物烘乾,再鍛燒至400度,形成棒狀之氧化鎳鈷奈米結構。氧化鎳鈷分別以X光繞射、掃描式電子顯微鏡、熱重分析、紅外線光譜、比表面積及循環伏安法分析,結果顯示該氧化鎳鈷之型態、比表面積及電容受到鍛燒溫度之影響。有關該氧化鎳鈷用以降解氯酚類衍生物的催化活性,在水溶液中通入空氣產生氣泡之降解環境下進一步加以分析。並探討影響降解效果的參數,包含氯酚溶液的初始濃度、pH值、反應溫度、觸媒劑量、觸媒種類及鍛燒後觸媒的活性。結果顯示2-氯酚在微波輔助加熱下被完全降解為對環境無害的產物(二氧化碳及水),可以在23.6分鐘達到95%的降解效率。
Catalytic degradation is one of the key remediation options that can be exploited to solve environmental pollution problems caused by chlorophenols. A novel microwave-assisted hydrothermal route for preparation of NiCo2O4 nanorods had been developed. The process contained two steps: first, nanorods of bimetallic (Ni, Co) hydroxide carbonate were obtained from a mixed solution of Ni(NO3)2.6H2O, Co(NO3)2.6H2O and urea under 800 W microwave irradiated for 5 min. Then, the bimetallic hydroxide carbonate nanorods were calcined 400℃ to fabricate spinel nickel cobaltite (NiCo2O4) nanorods. Both nanorods were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetry (TG), infrared (IR), BET surface areas (BET) and cyclic Voltammetry (CV). The results showed the morphologies, specific surface areas and specific capacitances changed with calcination temperatures. The catalytic activity towards the degradation of chlorophenols over NiCo2O4 nanorods was further studied under continuous bubbling of air through the liquid phase. Meanwhile the effects of initial concentration of chlorophenols, pH values, temperature, dose of catalysts and calcinated catalysts were evaluated. The results showed that 2-chlorophenol was degraded into harmless products (CO2 and water) under microwave irradiation. 95% of 2-chlorophenol was transformed in 23.6 minutes.
目錄
摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第一章 緒論 1
1-1 氯酚對環境污染的探討 1
1-1-1 氯酚之來源 1
1-1-2 氯酚之特性 2
1-1-3 氯酚之處理方法 3
1-2 微波 4
1-2-1 微波加熱原理 5
1-2-2 微波特性 7
1-2-3 影響微波的因素 9
1-2-4 微波加熱法與傳統加熱法的比較 10
1-3 金屬氧化物之製備及其性質 11
1-3-1 貴金屬 11
1-3-2 卑過渡金屬 12
1-3-3 混合金屬 14
1-4 金屬氧化物之應用 14
1-5 氯酚之非勻相催化 16
1-5-1 非均相費頓法(fenton’s reaction) 16
1-5-2 光催化分解 17
1-5-3 超音波氧化 20
1-5-4 微波輔助氧化 20
1-6 研究目的 22
第二章 實驗 25
2-1 實驗藥品 25
2-2 實驗設備 25
2-2-1 實驗儀器裝置圖 26
2-3 實驗方法 28
2-3-1 觸媒製備 29
2-3-2 觸媒特性鑑定及儀器介紹 32
2-3-3 微波輔助催化降解(MECD)氯酚反應探討參數 34
2-3-4 加熱輔助催化降解(CD)氯酚反應 36
2-3-5 MECD與CD之反應溶液分析儀器 36
第三章 結果與討論 39
3-1 觸媒特性鑑定 39
3-1-1 熱重分析(TGA) 39
3-1-2 紅外線光譜分析(FT-IR) 40
3-1-3 X-射線繞射分析(PXRD) 43
3-1-4 表面型態分析(SEM, TEM) 45
3-1-5 表面積分析(BET) 49
3-1-6 循環伏安分析(CV) 50
3-2 UV與HPLC儀器條件分析 53
3-3 微波輔助催化降解氯酚之活性探討 58
3-3-1 氧化鎳鈷觸媒降解氯酚之活性 58
3-3-2 氧化鎳降解氯酚之活性 68
3-3-3 氧化鈷降解氯酚之活性 71
3-3-4 MECD與CD降解2-氯酚之活性探討 73
3-4 觸媒種類對MECD降解2-氯酚之催化作用 76
第四章 結論 79
第五章 參考資料 81


圖目錄
圖 1 1.電磁波波長圖譜圖 6
圖 1 2.微波場作用分子示意圖 9
圖 1 3.傳統加熱與微波加熱示意圖 10
圖 2 1.微波輔助催化降解儀器裝置圖 27
圖 2 2.加熱輔助催化降解儀器裝置圖 28
圖 2 3.實驗設計主架構 29
圖 3 1.MH 觸媒 TG 圖 40
圖 3 2.PO 觸媒 TG 圖 40
圖 3 3.MH觸媒之FT-IR特性鑑定圖 42
圖 3 4.PO觸媒之FT-IR特性鑑定圖 42
圖 3 5.MH觸媒之XRD特性鑑定圖 44
圖 3 6.PO觸媒之XRD特性鑑定圖 44
圖 3 7.MH觸媒之表面形態分析圖 46
圖 3 8.PO觸媒之表面形態分析圖 48
圖 3 9.MH觸媒之BET特性鑑定圖 50
圖 3 10.PO觸媒之BET特性鑑定圖 50
圖 3 11.MH觸媒之循環伏安圖 53
圖 3 12.鍛燒後觸媒(C400)之循環穩定性測試圖 53
圖 3 13.2-氯酚不同 pH 值之標準水溶液 UV 圖譜 54
圖 3 14.2-氯酚標準水溶液之 UV 圖譜 55
圖 3 15.2-氯酚標準溶液之 UV 檢量線 55
圖 3-16.反應速率式趨勢圖 57
圖 3 17.鍛燒後MH觸媒對2-氯酚之MECD反應的影響 59
圖 3 18.鍛燒後PO觸媒對2-氯酚之MECD反應的影響 60
圖 3 19.濃度對MH觸媒降解2-氯酚之MECD反應的影響 61
圖 3 20.濃度對PO觸媒降解2-氯酚之MECD反應的影響 62
圖 3 21.MH觸媒劑量對2-氯酚之MECD反應的影響 63
圖 3 22.PO觸媒劑量對2-氯酚之MECD反應的影響 64
圖 3 23.溫度對MH觸媒降解2-氯酚之MECD反應的影響 65
圖 3 24.pH值對MH觸媒降解2-氯酚之MECD反應的影響 67
圖 3 25.取代基對MH觸媒降解苯酚之MECD反應的影響 68
圖 3 26.溫度對NO觸媒降解2-氯酚之MECD反應的影響 70
圖 3 27.pH值對NO觸媒降解2-氯酚之MECD反應的影響 70
圖 3 28.取代基對NO觸媒降解苯酚之MECD反應的影響 71
圖 3 29.溫度對CO觸媒降解2-氯酚之MECD反應的影響 72
圖 3 30.pH值對CO觸媒降解2-氯酚之MECD反應的影響 73
圖 3 31.取代基對CO觸媒降解苯酚之MECD反應的影響 73
圖 3 32.微波對MH觸媒降解2-氯酚之MECD反應的影響 74
圖 3 33.微波對NO觸媒降解2-氯酚之MECD反應的影響 75
圖 3 34.微波對CO觸媒降解2-氯酚之MECD反應的影響 76


表目錄
表 1 1.氯酚之物理化學特性 3
表 1 2.氯酚毒性 4
表 1 3.工業、科學及醫學使用的微波範圍 ( ISM Bands ) 7
表 1 4.在3 GHz 和25℃下,各物質之介電常數與散逸係數 8
表 1 5.非均相費頓法降解氯酚文獻回顧 18
表 1 6.光催化法降解氯酚之文獻回顧 21
表 1 7.微波輔助催化降解 23
表 2 1.觸媒之命名 30
表 3-1.以100 mg/L之2-氯酚初始濃度為例進行MECD反應測得之濃度、積分面積比及對數值。 56
表 3-2.鍛燒後MH觸媒對2-氯酚之MECD反應的速率常數k、反應初速率r0、半衰期t1/2、分解95%所需時間t95% 60
表 3-3.濃度對2-氯酚之MECD反應的速率常數k、反應初速率r0、半衰期t1/2、分解95%所需時間t95% 62
表 3-4.MH觸媒劑量對2-氯酚之MECD反應的速率常數k、反應初速率r0、半衰期t1/2、分解95%所需時間t95% 64
表 3-5.溫度對2-氯酚之MECD反應的速率常數k、反應初速率r0、半衰期t1/2、分解95%所需時間t95% 66
表 3-6.pH值對2-氯酚之MECD反應的速率常數k、反應初速率r0、半衰期t1/2、分解95%所需時間t95% 67
表 3-7.加熱方式對2-氯酚之降解反應的速率常數k、反應初速率r0、半衰期t1/2、分解95%所需時間t95% 75
表 3 8不同方法製備之氧化鎳鈷觸媒降解2-氯酚之效率 77
表 3 9不同觸媒降解2-氯酚之效率 77


1. 李炳楠, 以觸媒濕式氧化法處理鐵氰錯合物或2,4-二氯酚水溶液之研究. 2001, 國立中山大學: 高雄. Ch2.
2. Keith, L. and W. Telliard, ES&;T special report: priority pollutants: I. A perspective view. Environmental Science &; Technology, 1979. 13(4): p. 416-423.
3. Callahan, M.A., Water-related environmental fate of 129 priority pollutants. Vol. 1. 1979: Office of Water Planning and Standards, Office of Water and Waste Management, US Environmental Protection Agency.
4. Keith, L. EPA's Priority Pollutants: Where They Come from--Where They're Going. 1981.
5. Wan, J.K.S., et al., Highly effective methane conversion to aromatic hydrocarbons by means of microwave and RF-induced catalysis. Research on Chemical Intermediates, 2000. 26(6): p. 599-619.
6. Wada, Y., et al., Microwave-assisted hydrogenation of chlorinated phenols for complete dechlorination. Chemistry Letters, 2000. 29(6): p. 632-633.
7. Kobayashi, S., et al., Control of Adsorption by Microwave Irradiation. Chemistry Letters, 1996(9): p. 769-770.
8. Abramovitch, R.A., et al., decomposition of PCBs in soil using microwave energy. Chemosphere, 1999. 38(10): p. 2227-2236.
9. Abramovitch, R.A., et al., decomposition of PAHs in soil and desorption of organic solvents using microwave energy. Chemosphere, 1999. 39(1): p. 81-87.
10. 洪志青, 開放式微波萃取土壤中多氯聯苯之研究. 1999, 國立高雄師範大學: 高雄. p. 6-15.
11. Kingston, H. and L. Jassie, Introduction to microwave sample preparation, ACS Professional Reference Book. Introduction to Microwave Sample Preparation: ACS Professional Reference Book, 1988.
12. Serpone, N., S. Horikoshi, and A.V. Emeline, Microwaves in advanced oxidation processes for environmental applications. A brief review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2010. 11(2–3): p. 114-131.
13. Nadkarni, R., Applications of microwave oven sample dissolution in analysis. Analytical Chemistry, 1984. 56(12): p. 2233-2237.
14. Chen, Y., et al., Preparation and characterization of iridium dioxide–carbon nanotube nanocomposites for supercapacitors. Nanotechnology, 2011. 22: p.
82
115706.
15. Trasatti, S. and G. Buzzanca, Ruthenium dioxide: a new interesting electrode material. Solid state structure and electrochemical behaviour. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1971. 29(2): p. A1-A5.
16. Patil, U., et al., Characterization of honeycomb-like. Journal of Power Sources, 2009. 188(1): p. 338-342.
17. Liu, K.C. and M.A. Anderson, Porous nickel oxide/nickel films for electrochemical capacitors. Journal of the Electrochemical Society, 1996. 143: p. 124.
18. Zhang, X., et al., Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Research, 2010. 3(9): p. 643-652.
19. Wang, J., et al., Carbon-assisted synthesis of aligned ZnO nanowires. Materials Letters, 2005. 59(21): p. 2710-2714.
20. Pang, S.C., M.A. Anderson, and T.W. Chapman, Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. Journal Electrochemical Society, 2000. 147(2): p. 444-450.
21. Adelkhani, H. and M. Ghaemi, Characterization of manganese dioxide electrodeposited by pulse and direct current for electrochemical capacitor. Journal of Alloys and Compounds, 2010. 493(1-2): p. 175-178.
22. Devaraj, S. and N. Munichandraiah, High Capacitance of Electrodeposited MnO by the Effect of a Surface-Active Agent. Electrochemical and Solid-State Letters, 2005. 8: p. A373.
23. Wu, N.L., Nanocrystalline oxide supercapacitors. Materials Chemistry and Physics, 2002. 75(1-3): p. 6-11.
24. Kim, B.C., et al., Capacitive properties of RuO2 and Ru-Co mixed oxide deposited on single-walled carbon nanotubes for high-performance supercapacitors. Synthetic Metals, 2009. 159(13): p. 1389-1392.
25. Lee, B.J., et al., Carbon nanofibre/hydrous RuO2 nanocomposite electrodes for supercapacitors. Journal of Power Sources, 2007. 168(2): p. 546-552.
26. Hu, C.C., W.C. Chen, and K.H. Chang, How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors. Journal of the Electrochemical Society, 2004. 151: p. A281.
27. Wei, T.Y., et al., A Cost‐Effective Supercapacitor Material of Ultrahigh Specific Capacitances: Spinel Nickel Cobaltite Aerogels from an Epoxide‐Driven Sol–Gel Process. Advanced Materials, 2010. 22(3): p. 347-351.
83
28. Busca, G., The surface acidity and basicity of solid oxides and zeolites, in Metal Oxides: chemistry and applications, J. Fierro, Editor. 2006, CRC press: Boca Ratón.
29. Reddy, B.M., Redox properties of oxides, in Metal Oxides: chemistry and applications, J. Fierro, Editor. 2006, CRC press: Boca Ratón.
30. Cooper, C. and R. Burch, An investigation of catalytic ozonation for the oxidation of halocarbons in drinking water preparation. Water Research, 1999. 33(18): p. 3695–3700.
31. Andreozzi, R., et al., Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 1999. 53(1): p. 51–59.
32. Centi, G., et al., Catalytic wet oxidation with H2O2 of carboxylic acids on homogeneous and heterogeneous Fenton-type catalysts. Catalysis Today, 2000. 55(1-2): p. 61-69.
33. Hofstadler, K., et al., New reactor design for photocatalytic wastewater treatment with TiO2 immobilized on fused-silica glass fibers: photo-mineralization of 4-chlorophenol. Environmental Science &; Technology, 1994. 28(4): p. 670–674.
34. Baird, N.C., Free radical reactions in aqueous solutions: examples from advanced oxidation processes for wastewater and from the chemistry in airborne water droplets. Journal of Chemical Education, 1997. 74(7): p. 817–819.
35. Huling, S.G., R.G. Arnold, and R.A. Sierka, Contaminant adsorption and oxidation via the Fenton reaction. 2003, Google Patents.
36. Lu, M.-C., Oxidation of chlorophenols with hydrogen peroxide in the presence of goethite. Chemosphere, 2000. 40(2): p. 125-130.
37. Lu, M.C., J.N. Chen, and H.H. Huang, Role of goethite dissolution in the oxidation of 2-chlorophenol with hydrogen peroxide. Chemosphere, 2002. 46(1): p. 131-136.
38. Lücking, F., et al., Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution. Water Research, 1998. 32(9): p. 2607-2614.
39. Sabhi, S. and J. Kiwi, Degradation of 2, 4-dichlorophenol by immobilized iron catalysts. Water Research, 2001. 35(8): p. 1994-2002.
40. Ray, A.K. and A.A.C.M. Beenackers, Development of a new photocatalytic reactor for water purification. Catalysis Today, 1998. 40(1): p. 73-83.
41. Wu, T., et al., TiO2-assisted photodegradation of dyes. 9. photooxidation of a squarylium cyanine dye in aqueous dispersions under visible light irradiation. Environmental Science &; Technology, 1999a. 33(9): p. 1379–1387.
84
42. Houas, A., et al., Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental, 2001. 31(2): p. 145–157.
43. Dominguez, C., et al., Photocatalytic oxidation of organic pollutants in water. Catalysis Today, 1998. 40(1): p. 85–101.
44. Jardim, W.F., S.G. Moraes, and M.M.K. Takiyama, Photocatalytic degradation of aromatic chlorinated compounds using TiO2: toxicity of intermediates. Water Research, 1997. 31: p. 1728–1732.
45. Doong, R.A., et al., The influence of pH and cadmium sulfide on the photocatalytic degradation of 2-chlorophenol in titanium dioxide suspensions. Water Research, 2001. 35(12): p. 2873–2880.
46. Texier, I., et al., Solar photodegradation of pesticides in water by sodium decatungstate. Catalysis Today, 1999. 54: p. 297–307.
47. Drijvers, D., H. Van Langenhove, and M. Beckers, Decomposition of phenol and trichloroethylene by the ultrasound/H2O2/CuO process. Water Research, 1999. 33(5): p. 1187–1194.
48. Horikoshi, S., et al., Environmental remediation by an integrated microwave/UV illumination technique. 8. Fate of carboxylic acids, aldehydes, alkoxycarbonyl and phenolic substrates in a microwave radiation field in the presence of TiO2 particles under UV irradiation. Environmental Science &; Technology, 2004. 38(7): p. 2198-2208.
49. Ku, Y., R.M. Leu, and K.C. Lee, Decomposition of 2-chlorophenol in aqueous solution by UV irradiation with the presence of titanium dioxide. Water Research, 1996. 30(11): p. 2569–2578.
50. Chan, Y.C., J.N. Chen, and M.C. Lu, Intermediate inhibition in the heterogeneous UV-catalysis using a TiO2 suspension system. Chemosphere, 2001. 45(1): p. 29-35.
51. Bandara, J., et al., Sensitized degradation of chlorophenols on iron oxides induced by visible light. Comparison with titanium oxide. Applied Catalysis B: Environmental, 2001. 34: p. 321–333.
52. Androulaki, E., et al., Light induced elimination of mono-and polychlorinated phenols from aqueous solutions by PW12O403-. The case of 2, 4, 6-Trichlorophenol. Environmental Science &; Technology, 2000. 34(10): p. 2024-2028.
53. Herrmann, J.M., et al., New industrial titania photocatalysts for the solar detoxification of water containing various pollutants. Applied Catalysis B: Environmental, 2002. 35(4): p. 281-294.
54. Matos, J., J. Laine, and J.M. Herrmann, Effect of the type of activated carbons on the photocatalytic degradation of aqueous organic pollutants by
85
UV-irradiated titania. Journal of Catalysis, 2001. 200(1): p. 10-20.
55. Giménez, J., D. Curcó, and M. Queral, Photocatalytic treatment of phenol and 2, 4-dichlorophenol in a solar plant in the way to scaling-up. Catalysis Today, 1999. 54(2-3): p. 229-243.
56. Horikoshi, S., H. Hidaka, and N. Serpone, Environmental remediation by an integrated microwave/UV illumination technique. 3. A microwave-powered plasma light source and photoreactor to degrade pollutants in aqueous dispersions of TiO2 illuminated by the emitted UV/visible radiation. Environmental Science &; Technology, 2002. 36(23): p. 5229-5237.
57. Ai, Z., Y. Peng, and L. Xiaohua, Degradation of 4-chlorophenol by microwave irradiation enhanced advanced oxidation processes. Chemosphere, 2005. 60(6): p. 824-827.
58. Ai, Z., P. Yang, and X. Lu, Degradation of 4-chlorophenol by a microwave assisted photocatalysis method. Journal of Hazardous Materials, 2005. 124(1): p. 147-152.
59. Horikoshi, S., et al., Environmental remediation by an integrated microwave/UV illumination technique: IX. Peculiar hydrolytic and co-catalytic effects of platinum on the TiO2 photocatalyzed degradation of the 4-chlorophenol toxin in a microwave radiation field. Journal of Photochemistry and Photobiology A: Chemistry, 2006. 177(2): p. 129-143.
60. 賴特隆, 微波能應用於奈米氧化鎳合成及酚類污染物降解之研究. 2007, 國防大學中正理工學院: 桃園.
61. Portela Miguélez, J.R., et al., Kinetics of wet air oxidation of phenol. Chemical Engineering Journal, 1997. 67(2): p. 115-121.
62. Boldrin, P., et al., Direct synthesis of nanosized NiCo(2)O(4) spinel and related compounds via continuous hydrothermal synthesis methods. Industrial &; Engineering Chemistry Research, 2007. 46(14): p. 4830-4838.
63. Klissurski, D. and E. Uzunova, Synthesis of nickel cobaltite spinel from coprecipitated nickel-cobalt hydroxide carbonate. Chemistry of Materials, 1991. 3(6): p. 1060-1063.
64. Stoyanova, M., S. Christoskova, and M. Georgieva, Mixed Ni-Mn-oxide systems as catalysts for complete oxidation:: Part I. Preparation and characterization. Applied Catalysis A: General, 2003. 249(2): p. 285-294.
65. Chi, B., et al., Effect of temperature on the preparation and electrocatalytic properties of a spinel NiCo2O4/Ni electrode. International Journal of Hydrogen Energy, 2004. 29(6): p. 605-610.
66. Aricò, A.S., et al., Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 2005. 4(5): p. 366-377.
86
67. Xiao, J. and S. Yang, Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo2O4 spinel for pseudocapacitors. RSC Advances, 2011. 1(4): p. 588-595.
68. Guene, M., et al., Preparation of nickel-cobalt spinel oxides NixCo3-xO4. Comparison of two physical properties stemming from four different preparation methods and using carbon paste electrode. Bulletin of the Chemical Society of Ethiopia, 2007. 21(2): p. 255-262.
69. Wachs, I.E., Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials. Catalysis Today, 2005. 100(1): p. 79-94.
70. Wang, D.W., et al., 3D Aperiodic Hierarchical Porous Graphitic Carbon Material for High‐Rate Electrochemical Capacitive Energy Storage. Angewandte Chemie, 2008. 120(2): p. 379-382.
71. Barakat, M., et al., Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles. Applied Catalysis B: Environmental, 2005. 57(1): p. 23-30.
72. Christoskova, S. and M. Stoyanova, Degradation of phenolic waste waters over Ni-oxide. Water Research, 2001. 35(8): p. 2073-2077.
73. Lai, T.-L., et al., Microwave-assisted rapid fabrication of Co3O4 nanorods and application to the degradation of phenol. Catalysis Today, 2008. 131(1–4): p. 105-110.
74. Pera-Titus, M., et al., Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental, 2004. 47(4): p. 219-256.
75. 陳美樺, 利用微波輔助氧化鎳觸媒催化降解2-氯酚. 2008, 國立高雄師範大學: 高雄.
76. 莊育修, 微波輔助氧化鎳觸媒催化降解3-氯酚. 2009, 國立高雄師範大學: 高雄.
77. 黃鈞琳, 微波輔助奈米氧化鎳降解4-氯酚之研究. 2007, 國立高雄師範大學: 高雄.
78. 楊金慧, 微波輔助氧化鎳觸媒催化降解4-硝基酚之研究. 2008, 國立高雄師範大學: 高雄.
79. Lai, T.L., et al., Microwave-enhanced catalytic degradation of 4-chlorophenol over nickel oxides. Applied Catalysis B: Environmental, 2008. 78(1-2): p. 151-157.
80. Ai, Z., et al., Microwave-induced Catalytic Oxidation of RhB by a Nanocomposite of Fe@Fe2O3 Core−Shell Nanowires and Carbon Nanotubes. The Journal of Physical Chemistry C, 2008. 112(26): p. 9847-9853.
87
81. Pirkanniemi, K. and M. Sillanpä, Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere, 2002. 48(10): p. 1047-1060.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔