(3.238.88.35) 您好!臺灣時間:2021/04/10 20:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳紹銘
研究生(外文):Shaoming Wu
論文名稱:多波長摻鉺光纖雷射輻射波帶特性之研究
論文名稱(外文):The studies of waveband lasing performance of multiwavelength Erbium-doped fiber-ring laser
指導教授:林鴻銘林鴻銘引用關係
指導教授(外文):Hermann Lin
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:光電與通訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:108
中文關鍵詞:多波長光纖雷射摻鉺光纖放大器非線性極化旋轉效應同軸桑克干涉儀
外文關鍵詞:Multiwavelength fiber laserErbium-doped fiber amplifierNonlinear polarization rotationIn-line Sagnac interferometer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
本論文實驗架構是利用摻鉺光纖放大器(Erbium-Doped Fiber Amplifier, EDFA)當作雷射的增益介質(gain medium),並且將非線性極化旋轉效應(NPR)與同軸桑克干涉儀(In-Line)結合成新式梳狀濾波器(comb filter)再置入環型共振腔之中,這可使系統解決摻鉺光纖的齊性延展所造成的模態競爭,進而產生多波長雷射。
實驗過程是藉由改變非線性極化旋轉效應與摻鉺光纖長度,利用此方法來分析雷射範圍,再加入幫激功率的變化藉此觀察雷射線寬、頻寬及訊號雜訊比。
實驗結果,取6dB頻寬做出連續可調式多波長雷射,摻鉺光纖長度可分為5 m、10 m、15 m、20 m,連續可調範圍分別為1527.6 nm-1558.0 nm、1528.4 nm-1568.2 nm、1546.2 nm-1575.2 nm、1551.4 nm-1577.2 nm 。取20dB平坦度做出固定式多波長雷射,摻鉺光纖長度5 m、10 m、15 m、20 m變化,雷射範圍分別為:1525.2 nm-1580.0 nm、1544 nm-1570 nm、1551.4 nm-1611.0 nm、1556.2 nm-1611.2 nm。

In this study, the laser was demonstrated in the Erbium-doped fiber amplifier with the nonlinear polarization rotation and the in-line Sagnac as a novel comb filter in the ring cavity. In this way, it could suppress the mode competition which is generated by homogeneous gain broadening of erbium-doped fiber laser, and then induce the multiwavelength laser.
The experimental work in this study is varied with the non-linear polarization rotation effect and the length of erbium-doped fiber. We observed the laser spectra and analyzed the laser characteristic such as line width, laser spectrum and signal to noise ratio.
The experimental results showed, the erbium-doped fiber laser lengths were 5 m, 10 m, 15 m and 20 m of the 6-dB laser spectrum waveband tunable laser continuously. The wavebands were tuned continuously from 1527.6 nm to 1558.0 nm, 1528.4 nm to 1568.2 nm, 1546.2 nm to 1575.2 nm and 1551.4 nm to 1577.2 nm, respectively. The erbium-doped fiber laser lengths were 5 m, 10 m, 15 m and 20 m of the 20-dB flattened ultrabroadband lasing spectrum. The wavebands were tuned continuously from 1525.2 nm to 1558.0 nm, 1544 nm to 1570 nm, 1551.4 nm to 1611.0 nm and 1556.2 nm to 1611.2 nm, respectively.

摘要 I
Abstract II
目錄 III
表目錄 IX
第一章緒論 1
1.1 簡介 2
1.1.1 光纖雷射簡介 5
1.1.2 多波長光纖雷射 8
1.2 研究動機 9
1.3 論文架構 10
第二章 原理及設計 11
2.1 摻鉺光纖放大器 11
2.2 非線性極化旋轉效應 15
2.3 光強度相依損耗 17
2.4 同軸桑克干涉儀 18
2.5 多波長摻鉺光纖環型雷射設計之原理 21
第三章 實驗步驟及結果 23
3.1 可調式雷射頻譜之量測 23
3.2 固定式雷射頻譜之量測 26
3.3 摻鉺光纖長度 27
3.3.1 5公尺摻鉺光纖 27
3.3.2 10公尺摻鉺光纖 28
3.3.3 15公尺摻鉺光纖 29
3.3.4 20公尺摻鉺光纖 29
3.4 幫激功率 30
3.5 摻鉺光纖長度與幫激功率交叉比對雷射頻譜之量測 33
第4章 數據分析與討論 36
4.1 摻鉺光纖長度對應可調式多波長雷射頻譜之分析討論 36
4.2 摻鉺光纖長度對應固定式多波長雷射的分析與討論 37
4.3 幫激功率對可調式多波長雷射頻譜的分析與討論 38
4.4 幫激功率對應固定式雷射頻譜的分析與討論 39
4.5 幫激功率與摻鉺光纖長度交叉比對之頻寬較佳雷射頻譜 40
第五章 結論與未來展望 42
5.1 結論 42
5.2 未來展望 43
附錄 44
參考文獻 93
圖目錄
圖1- 1雷射架構 44
圖1- 2 ASE原理 44
圖1- 3激發輻射原理 45
圖2- 1摻鉺光纖剖面圖 45
圖2- 2鉺離子能階 46
圖2- 3NPR工作原理[13] 46
圖2- 4 NPR-IDL功率與穿透率的關係 47
圖2- 5雙通同軸桑克干涉儀架構 47
圖2- 6雙通同軸干涉儀工作原理 47
圖3- 1多波長摻鉺光纖環型雷射之結構 48
圖3- 2可調式多波長雷射頻譜移動之最短波帶 48
圖3- 3可調式多波長雷射,能量移動至較長波帶之頻譜 48
圖3- 4可調式多波長雷射兩端波長之極限,改變幫激功率之頻譜 49
圖3- 5固定幫激功率,調整極化控制器之頻譜 50
圖3- 6多波長可調式雷射6-dB頻寬之頻譜 51
圖3- 7定義多波長可調式雷射線寬之頻譜 51
圖3- 8定義多波長可調式雷射SNR之頻譜 52
圖3- 9定義多波長固定式雷射20-dB之頻寬頻譜 52
圖3- 10定義多波長固定式雷射SNR之頻譜 53
圖3- 11定義多波長固定式雷射線寬之頻譜 53
圖3- 12多波長固定式雷射6-dB之頻寬頻譜 54
圖3- 13EDF5 m 幫激功率550 mW 連續可調多波長雷射之頻譜 55
圖3- 14 EDF5 m幫激功率450 mW連續可調多波長雷射之頻譜 56
圖3- 15 EDF5 m 幫激功率350 mW 連續可調多波長雷射之頻譜 57
圖3- 16 EDF5 m 幫激功率250 mW 非連續可調多波長雷射之頻 58
圖3- 17 EDF5 m 幫激功率150 mW 非連續可調多波長雷射之頻 59
圖3- 18 EDF10 m幫激功率550mW連續可調多波長雷射之頻譜 60
圖3- 19 EDF10 m幫激功率450 mW連續可調多波長雷射之頻譜 61
圖3- 20 EDF10 m幫激功率350mW連續可調多波長雷射之頻譜 62
圖3- 21 EDF10 m 幫激功率250 mW非連續可調多波長雷射之頻 63
圖3- 22 EDF10 m幫激功率150 mW非連續可調多波長雷射之頻 64
圖3- 23 EDF15 m 幫激功率550mW連續可調多波長雷射之頻譜 65
圖3- 24 EDF15 m幫激功率450 mW連續可調多波長雷射之頻譜 66
圖3- 25 EDF15 m,350 mW連續可調多波長雷射之頻譜 67
圖3- 26 EDF15 m幫激功率250 mW連續可調多波長雷射之頻譜 68
圖3- 27 EDF15 m幫激功率150 mW非連續可調多波長雷射之頻 69
圖3- 28 EDF20 m幫激功率350 mW連續可調多波長雷射之頻譜 70
圖3- 29 EDF5 m改變幫激功率固定式多波長雷射之頻譜 71
圖3- 30 EDF10 m改變幫激功率固定式多波長雷射之頻譜 72
圖3- 31 EDF15 m改變幫激功率固定式多波長雷射之頻譜 73
圖3- 32 EDF20 m改變幫激功率固定式多波長雷射之頻譜 74
圖3- 33固定幫激功率,調整極化控制器之頻譜 75
圖4- 1增益曲線在不同居量反轉率,對應波長的變化頻譜[28] 76
圖4- 2鉺離子能階[27] 76
圖4- 3 L-band的放大機制[27] 77
圖4- 4 EDF 5 m幫激功率150mW非連續可調之頻譜 77
圖4- 5 EDF 5 m幫激功率250 mW非連續可調之頻譜 78
圖4- 6 EDF 5 m幫激功率350mW連續可調之頻譜 78
圖4- 7 EDF5 m幫激功率450mW連續可調之頻譜 79
圖4- 8 EDF 5 m幫激功率550mW連續可調之頻譜 79
圖4- 9 EDF 10 m幫激功率150mW非連續可調之頻譜 80
圖4- 10 EDF 10 m幫激功率250mW非連續可調之頻譜 80
圖4- 11 EDF10 m幫激功率350mW連續可調之頻譜 81
圖4- 12 EDF10 m幫激功率450mW連續可調之頻譜 81
圖4- 13 EDF10 m幫激功率550mW連續可調之頻譜 82
圖4- 14 EDF 15 m幫激功率150mW非連續可調之頻譜 82
圖4- 15 EDF15 m幫激功率250mW非連續可調之頻譜 83
圖4- 16 EDF15 m幫激功率350mW連續可調之頻譜 83
圖4- 17 EDF15 m幫激功率450mW連續可調之頻譜 84
圖4- 18 EDF 15 m幫激功率550mW連續可調之頻譜 84
圖4- 19 EDF20 m幫激功率350mW連續可調之頻譜 85
圖4- 20 EDF 5 m線寬分析 85
圖4- 21 EDF 5 m SNR分析 86


表目錄
表2- 1摻雜稀土族光纖雷射之輻射頻譜 87
表3- 1摻鉺光纖 5 m幫激功率變化之固定式雷射頻譜特性 88
表3- 2摻鉺光纖 10m幫激功率變化之固定式雷射頻譜特性 88
表3- 3摻鉺光纖 15 m幫激功率變化之固定式雷射頻譜特性 88
表3- 4摻鉺光纖 20 m幫激功率變化之固定式雷射頻譜特性 89
表3- 5幫激功率550 mW,參鉺光纖長度變化之固定式雷射頻譜特性 89
表3- 6幫激功率450 mW,參鉺光纖長度變化之固定式雷射頻譜特性 89
表3- 7幫激功率350 mW,參鉺光纖長度變化之固定式雷射頻譜特性 89
表3- 8幫激功率250 mW,參鉺光纖長度變化之固定式雷射頻譜特性 90
表3- 9幫激功率150 mW,參鉺光纖長度變化之固定式雷射頻譜特性 90
表3- 10摻鉺光纖5 m,幫激功率變化之可調式雷射頻譜特性 90
表3- 11摻鉺光纖10 m,幫激功率變化之可調式雷射頻譜特性 91
表3- 12摻鉺光纖15 m,幫激功率變化之可調式雷射頻譜特性 91
表4- 1幫激功率350mW,摻鉺光纖長度變化之可調式雷射頻譜範圍 91
表4- 2幫激功率450 mW,調整極化控制器之分析 92
表4- 3幫激功率350 mW,調整極化控制器之分析 92
表4- 4幫激功率250 mW,調整極化控制器之分析 92
表4- 5幫激功率150 mW,調整極化控制器之分析 92

[1]T. H. Maiman, “Stimulated Optical Radiation in ruby” ,NATURE,
493-494,1960.
[2]R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent light emission from GaAs junctions”, PHYSICAL REVIEW LETTERS,Vol.9,No.4,366-369,1962.
[3]譚繼山, 『雷射與光纖通信』,亞太圖書出版社,1986.
[4]胡杰,黃健銘,張耀文, 『全光纖式奈秒脈衝雷射的潛力與技術發展』
機械工業雜誌311期,2009.
[5]原榮, 『光纖通訊系統-原理與應用”電子工業出版社』,2004.
[6]R. J. Mears, L. Reekie, I. M. Jauncey“Low-noise erbium-doped fibre amplifier operating at 1.54μm”, Optical com- munications,Vol.23,No.19,1026-1028,1987.
[7]E. Snitzer, “Optical Maser Action of Nd+3 in a Barium Crown Glass ”,PHYSICAL REVIEW LETTERS,Vol.6,No.7,444-451,1961.
[8]G. Zhang, Q. Zhou, C. Yu, L. Hu, D. Chen“Neodymium-doped phosphate fiber lasers with an all-solid microstructured inner cladding”,OPTICS LETTERS, Vol. 37, No. 12,2259-2261,2012
[9]C. Lecaplain, B. Ortaç, G. Machinet, J. Boullet, M. Baumgartl, T. Schreiber, E. Cormier, A. Hideur, “Femtosecond Microjoule-Class Ytterbium Fiber Lasers”, OSA,2011.
[10]J. Geng, J. Wu, S. Jiang, “Efficient Single-Frequency Thulium Doped Fiber Laser Near 2-μm”,OSA,2007.
[11]J. Tian, Y. Yao, J. J. Xiao, X. Xu, D. Chen, “A pump power controlled multiwavelength fiber laser with adjustable output channels at fixed wavelength”,Applied Phyhics,545-549,2011.
[12]J. J. Tian , Y. Yao, “A Linear Cavity Multiwavelength Fiber Laser
with Adjustable Lasing Line Number for Fixed Spectral Regions”,Laser Physics, Vol. 21, No. 3,505-508, 2011
[13]X. Fenga, H. Y. Tama, P. K. A. Waib, “Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation”, OPTICS EXPRESS Vol.14, No.18,8205-8210,2006.
[14]J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, I. Bennion, , “Multiwavelength Generation in an Erbium-Doped Fiber Laser Using In-Fiber Comb FiltersIEEE PHOTONICS TECHNOLOGY LETTERS”, VOL.8,NO.1,60-62,1996.
[15]J. N. Maran, R. Slavík, S. LaRochelle, M. Karásek, “Chromatic
Dispersion Measurement Using a Multiwavelength Frequency-
Shifted Feedback Fiber Laser”,IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 53, NO. 1,67-71,2004.
[16]Z.C. Luo, A.P. Luo and W.C. Xu, “Stable multiwavelength erbium-doped fibre laser using intensity-dependent loss mechanism with short cavity length”, ELECTRONICS LETTERS,Vol.47, No.20
,2011.
[17]H. M. Lin, “Waveband-tunable multiwavelength erbium-doped fiber
laser”,OSA, Vol. 49, No. 14.2653-2657,2010.
[18] H. M. Lin, Y. F. Huang, Y. S. Huan, “ Multiwavelength Erbium -
Doped Fiber Laser Employing A Dual-Pass Unbalanced In-Line Sagnac Interferometric Comb Filter”,OSA,2011.
[19]F. Wang, X. L. Zhang, Y. Yu, X. Huang, “ 82- channel multi-
wavelength comb generation in a SOA fiber ring laser”, Optics &; Laser Technology,285-288,2010.
[20].Z. Chen, S. Ma and N. K. Dutta, “Multiwavelength fiber ring laser based on a semiconductor and fiber gain medium”, OSA, Vol.19
,No.3,1234-1239,2009.
[21]Daru Chen, Shan Qin, and Sailing He, “Channel-spacing-tunable multi-wavelength fiber ring laser with hybrid Raman and Erbiumdoped fiber gains”,OSA,Vol.15,NO.3,930-935,2007
[22]Y. G. Han, Member, IEEE, J. H. Lee, Member, IEEE, S. B. Lee, L.
Potì, A. Bogoni, “Novel multiwavelength Erbium-doped fiber and
Raman fiber ring lasers with continuous wavelength spacing tenability at room temperature”,IEEE, Vol.25,No.8,2219-2225,2007.
[23]M. F. Vallejo, S. Diaz, R. A. Herrera, R. Unzu, M. A. Quintela,
“Comparison of the stability of ring resonator structures for multiwavelength Fiber Lasers Using Raman or Er-doped Fiber
amplification”,IEEE, VOL. 45, NO. 12,1551-1557,2009.
[24]S. Qin, D. Chen, “Stable and wavelength -range -controllable
multi-wavelength fiber laser based on Raman and Erbium-doped
fiber hybrid gain Mechanism”,OSA,2007.
[25]L. Zhan, J. H. Ji, J. Xia, S. Y. Luo and Y. X. Xia, “160-line
multiwavelength generation of linearcavity self-seeded Brillouin-
Erbium fiber laser”,OSA, Vol.14, No.22,10233-10238.2006.
[26]Z. Zhang, L. Zhan, Y. Xia, “Tunable self-seeded multiwavelength
Brillouin-Erbium fiber laser with enhanced power efficiency”,OSA,
Vol.15,No.15,9731-9736,2007.
[27]H. Ono, M. Yamada, T. Kanamori, S. Sudo, Y. Ohishi,
“1.58-μm band gain - flattened Erbium - doped fiber amplifiers for WDM transmission systems”,IEEE,VOL.17,NO.3,490 -496
,1999.
[28]Y. Sun, Senior, J. L. Zyskind,A. K. Srivastava, “Average inversion level, modeling, and physics of Erbium-doped fiber amplifiers”,IEEE, VOL. 3, NO. 4,991-1007,1997.
[29]X. P. Dong, S. Li, K.S. Chiang, M. N. Ng, B. C .B. Chu,
“Multiwavelength erbium-doped fibre laser based on a
high-birefringence fibre loop mirror”, ELECTRONICS LETTERS,
Vol. 36 No.19,1609-1610.2000.
[30]J. Yao, J. Yao, Senior, OSA, Z. Deng, J. Liu,
“Investigation of room-temperature multiwavelength fiber-ring laser that incorporates an SOA-based phase modulator in the laser cavity”,IEEE, VOL.23, NO.8,2484-2490,2005.
[31]R. Slavík , S. LaRochelle, “Frequency shift in a fiber laser resonator”, OPTICS LETTERS ,Vol.27, No.1,28-30,2002.
[32]S. Pan, C. Lou, Y. Gao, “Multiwavelength erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry-Perot filter”,OSA,Vol.14, No.3,1113-1118,2006.
[33] Z. Zhang, L. Zhan, K. Xu, J. Wu, Y. Xia, J. Lin, “Multiwavelength
fiber laser with fine adjustment,based on nonlinear polarization rotation and birefringence fiber filter”, OSA,Vol. 33,No.4.324-326,2008.
[34]Y.G. Han, T.V. A. Tran, S.B. Lee, “Wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on four-wave mixing of dispersion-shifted fiber.”,OSA, OPTICS LETTERS, Vol. 31, No. 6,697-699,2006.
[35]S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, E. V.
Podivilov, “Four-wave-mixing-induced turbulent spectral
broadening in a long Raman fiber laser”,OSA, Vol. 24,
No. 8,1729-1739,2007.
[36]N. J. C. Libatique, “Large Channel Count (~60) Wavelength-
Selectable 1.5um Laser for 50GHz WDM applications”,IEEE,2000.
[37]T. V. A. Tran, K. Lee, S. B. Lee, “Switchable multiwavelength
Erbium doped fiber laser based on a nonlinear optical loop mirror incorporating multiple fiber Bragg gratings”,OSA, Vol.16,
No.3,1460-1465,2008.
[38]C. H. Yeh1, C. W. Chow, Y. F. Wu, F. Y. Shih, C. H. Wang, S. Chi,
“Multiwavelength Erbium-Doped Fiber Ring Laser Employing Fabry- Perot Etalon”,OSA,2009.
[39]M. Stryjak, A. Budnicki, P. Kaczmarek, and K. M. Abramski, “Discretely Tunable and Multiwavelength Erbium Doped Fibre
Lasers with Fabry-Perot Etalon”,IEEE,74-77,2007.
[40]C. Chang1, H. M. Lin, Y. S. Huang, S. H. Tong, “Multiwavelength-
switchable and Uniform Erbium- doped fiber laser using unbalanced
in-line Sagnac Interferomete”,OSA,Vol.15,No.19,12450-12456
,2007.
[41]S. K. Kim, M. J. Chu, J. H. Lee, “Wideband multi-wavelength
erbium-doped fiber ring laser with frequency shifted feedback”,
Opticas Commun,291-302,2001.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔