跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 19:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃淑美
研究生(外文):Huang, Shu-Mei
論文名稱:T型三通管液壓成形模具幾何設計之研究
論文名稱(外文):Study on the die shape design of T-shape Tube Hydroforming.
指導教授:管金談管金談引用關係
指導教授(外文):Kwan, Chin-Tarn
口試委員:林清田林維新
口試委員(外文):Lin, Ching-TienLin, Wei-Shin
口試日期:2012-06-13
學位類別:碩士
校院名稱:南開科技大學
系所名稱:車輛與機電產業研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:51
中文關鍵詞:有限元素分析T型三通管液壓成形模具幾何模型設計
外文關鍵詞:Finite element simulationT-shape tube hydroformingdie shape design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:871
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
T型三通液壓成形近二十幾年來被廣泛的研究,惟研究主項大都局限於負載路徑及頂缸作動參數的研究,甚少探討不同模穴幾何對管件成形品質之影響。本文針對模穴幾何之各種建構方式探討在相同的負載路徑條件下對管件成形品質之影響。本文研究同徑及異徑T型三通管液壓成形之模具設計,利用有限元素分析軟體DEFORM 3D模擬成形各種模具幾何對製品品質之影響,製品品質包括模穴幾何對成形品表面特徵、管壁厚度分佈、缺陷、軸向成形力及頂缸反作用力等之影響。獲得以下結論:
1. T型三通成形品主管與歧管交接處之鼓脹程度由大至小比較,同徑者依序為倒三角平面幾何模穴、五邊構線曲面幾何模穴、變化R角曲面模穴;異徑者依序為五邊構線曲面幾何模穴、鞍式插管曲面模穴、變化R角曲面模穴。
2. 成形三通管之最小管壁厚度(不含帽蓋) 由大至小比較,同徑者依序為倒三角平面幾何模穴、變化R角曲面模穴、五邊構線曲面幾何模穴者之成形;但是異徑者皆呈現相當ㄧ致之最小管壁厚度。
3. 對於同徑三通管成形,倒三角平面幾何模穴與變化R角曲面模穴兩者之軸向成形力量幾乎相同,而五邊構線曲面幾何模穴者之軸向成形力量比另外兩者為低;對於異徑三通管成形,鞍式插管曲面模穴、變化R角曲面模穴而與五邊構線曲面幾何模穴三者之軸向成形力量皆幾乎相同。
4. 對於同徑三通管成形,變化R角曲面模穴者具有最低之頂缸反作用力;對於異徑三通管成形,鞍式插管曲面模穴者具有最低之頂缸反作用力。


T-shape tube hydroforming was widely studied in the recent two decades, but much work has been done on the influence of the loading path and the associated feeding stroke needed, little work has been done on the influence of the die shape geometry on the quality of the formed tube. In this paper, an investigation of the die shape design of T-shape Tube Hydroforming is carried out. In this study, the finite element method is used to investigate the cold hydroforming process of a T-shape tube. A series of simulations on hydraulic expansion, axial feeding and the counter backing of the tubes was carried out using the DEFORM-3D program. The influence of the die shape construction methods on the surface character of die shapes, the axial punch force, the counter punch force and the wall thickness distribution of the formed tube are examined. From the results, the following conclusions are obtained:
1. Comparing the surface expansion from large to small at the intersection of main tube and branch tube of the formed tubes, their forming dies are designed by the triangle plane method, the five side method and the variable radius method, respectively in the straight Tee, whereas the dies are designed by the five side method, the saddle surface method and the variable method, respectively in the reducing Tee.
2. Comparing the minimum tube thicknesses (not including the top of the protrusion) from thick to thin of the formed tubes, their forming dies are designed by the triangle plane method, the variable radius method and the five side method, respectively in the straight Tee. Approximate minimum tube thicknesses of the formed tubes are obtained using the dies designed by the five side method, the saddle surface method and the variable method in the reducing Tee.
3. Approximate axial forming loads are found using the dies designed by the triangle plane method and the variable radius method, and the lowest axial forming load is found using the die designed by the five side method in the straight Tee. Approximate loads are found using the dies designed by the saddle surface method, the variable method and the five side method in the reducing Tee.
4. The lowest counter force is found using the die designed by the variable radius method in the straight Tee, whereas the die is designed by the saddle surface method in the reducing Tee.

目錄
第一章 前言.......................................................................................................1
1.1 研究動機與目的.....................................................................................1
1.2 文獻回顧.................................................................................................2
1.3 研究方法.................................................................................................5
1.4 論文架構.................................................................................................5
第二章 分析方法...............................................................................................7
2.1 有限元素法之原理................................................................................7
2.2 DEFORM 3D的介紹.............................................................................7
2.3 液壓成形內壓估算理論........................................................................9
2.4 材料變形理論......................................................................................14
2.5 摩擦模式..............................................................................................16
第三章 製程規劃與模穴幾何設計.................................................................19
3.1 製程分析模型.......................................................................................19
3.2 加壓路徑規劃.......................................................................................21
3.3 模穴幾何建模.......................................................................................23
第四章 結果與討論...........................................................................................34
4.1各種模穴幾何所成形之產品外形評估................................................34
4.2各種模穴幾何對液壓成形品厚度分佈之影響....................................38
4.3各種模穴幾何對液壓軸向成形力量之影響........................................42
4.4各種模穴幾何對液壓成形頂缸反作用力之影響................................44
第五章 結論.......................................................................................................47
參考文獻...........................................................................................................49

[1] 劉志建,不銹鋼三通管件液壓成形製程設計之研究,南開科技大學,車輛與機電產業研究所精密模具與機械產業研發碩士專班,碩士論文,2011。
[2] F. Dohmann and C. Hartl, “Hydroforming—a method to manufacture light-weight parts”, Journal of Material Processing Technology, Vol.60, pp.669–675, 1996.
[3] M. Koc, Development of design guideline for part, tooling and process in the tube hydroforming technology, PhD Dissertation, Ohio State University, Columbus, Ohio, 1999.
[4] A. Asnafi and A. Skogsgärdh, “Theoretical and experimental analysis of stroke-controlled tube hydroforming”, Materials Science & Engineering, vol.279, pp.95-110, 2000.
[5] F. Dohmann and C. Hartl, “Tube hydroforming, research and practical application”, Journal of Material Processing Technology, Vol.71, pp.187–196, 1997.
[6] L. P. Lei, J. Kim and B. S. Kang, “Analysis and design of hydroforming processes by the rigid-plastic finite element method”, Journal of Material Processing Technology, Vol.114, pp.201–206, 2001.
[7] M. Koc, T. Allen, S. Jiratheranat and T. Altan, “The use of FEA and design of experiments to establish design guidelines for simple hydroformed parts. International Journal of Machine Tools & Manufacture, Vol.40, pp.2249–2266, 2000.
[8] K. J. Fann and L. Su, “Investigation on hydroforming of a T-tube with finite element method”. The 17th National Conference on Mechanical Engineering, The Chinese Society of Mechanical Engineering, D103, 2000.
[9] Y. M. Hwang, Y. K. Lin, H. C. Wu, and H. C. Chen, “FE-Simulations on T-shape Tube Hydroforming", Proceeding, the 18th National Conference of The Chinese Society of Mechanical Engineering, Taipei, Taiwan, pp.311-315, 2001.
[10] M. Strano, S. Jirathearanat, S. G. Shr and T. Altan, “Virtual process development in tube hydroforming”, Journal of Materials Processing Technology, Vol.146, pp.130-136, 2004.
[11] Y. M. Hwang, T. C. Lin, and W. C. Chang, “Experiments on T-shape hydroforming with counter punch”, Journal of Materials Processing Technology, Vol.192, pp.243-248, 2007.
[12] M. Ahmed and M. S. J. Hashmmi, “Estimation of machine parameters for hydraulic bulge forming of tubular components”, Journal of Materials Processing Technology, Vol.64, pp.9-23, 1997.
[13] W. J. Song. S. C. Heo, J. Kim and B.S Kang,“Investigation on preformed shape designing to improve formability in tube hydroforming process using FEM”, Journal of Materials Processing Technology, Vol.177, pp.658-662, 2006.
[14] T. Sokolowski, K. Gerke, M. Ahmetoglu, and T. Altan,“Evaluation of tube formability and material characteristice:hydraulic bulge testing of tubes”, Journal of Materials Proccessing Technology, Vol.98, pp.34-40, 2000.
[15] E. Chu and Y. Xu, “Influences of generalized loading parameters on FLD predictions for aluminum tube hydroforming”, Journal of materials processing technology, Vol.196, pp.1-9, 2008.
[16] Y. Hashimoto, O. Sonobe, H. Abe and A. Yorifuji, “Effects of tube mechanical properties and axial feeding condition on tube forming limit in hydroforming”, The Proceeding of the 2001 Japanese Spring Conference for the Technology of Plasticity, pp.135-136, 2002.
[17] M. Imaninejad, G. Subhash and A. Loukus, “Loading path optimization of tube hydroforrming process”, International Journal of Machine Tools & Manufacture, Vol.45, pp.1504-1514, 2005.
[18] H. Mizukoshi, H. Okada and H. Wakabayashi, “Tee fitting hydraulic formability of aluminum alloy tubes”, The Proceedings of the 49th Japanese Joint Conference for the Technology of Plasticity, pp.323-324, 1998.
[19] S. Fuchizawa, M. Narazaki, and A. Shirayori, “Bulge forming of aluminum alloy tubes by internal pressure and axial compression”, Advanced Technology of Plasticity, 5th ICTP, Columbus, Ohio, USA, Vol.1, p.497, October7-10, 1996.
[20] T. Uchikawa, S. Fuchizawa, A. Shirayori and M. Narazaki, “Bulge forming of copper tubes under internal pressure and axial compression using closed die”, The Proceedings of the 48th Japanese Joint Conference for the Technology of Plasticiyt, pp.365-366, 1997.
[21] S. Fuchizawa, T. Shimoyama, A. Shirayori and M. Narazaki, “Deformation behavior of aluminum alloy tube in free hydraulic bulging by internal pressure and axial feeding”, The Proceedings of the 52th Japanese Joint Conference for the Technology of Plasticity, pp.23-24, 2001.
[22] M. Koc, T. Allen, S. Jiratheranat and T. Altan,“The use of FEA and design of experiment to establish design guidelines for simple hydroformed parts”, International Journal of Machine Tools and Manufacture, Vol.40, pp.2249-2266, 2000.
[23] M. Ahmed and M. S. J. Hashmi, “Three-dimensional finite-element simulation of bulge forming,” Journal of Materials Processing Technology, Vol.119, pp.387-392, 2001.
[24] H. Kashani Zadeh and M. Mahmoud Mosavi, “Finite element simulation and experiment in tube hydroforming of unequal T shapes”, Journal of Materials Processing Technology, Vol.177, pp.684-687, 2006.
[25] Y. Guan and F. Pourboghrat, “Fourier series based finite element analysis of tube hydroforming-Generalized plane strain model”, Journal of materials processing technology, Vol.197, pp.379-392, 2008.
[26] B. Carleer, G. van der Kevie, L. de Winter and B. van Veldhuizen, “Analysis of the effect of material properties on the hydroforming process of the tubes”, Journal of Materials Processing Technology, Vol.104, pp.158-166, 2000.
[27] S. Kobayashi, S. I. Oh, and T. Altan, Metal Forming and Finite-Element Method, Oxford University Press, 1989.
[28] Deform-3D user’s Manual, Version 6.1, Scientific Forming Technologies Corporation, Columbus, Oh, 2008.
[29] A. C. Ugural and S. K. Fenster, Advanced Strength and Applied Elasticity, The 4th edition, Pearson Education Taiwan Ltd. 2004.
[30] A. Mendelson, Plasticity: Theory and Application, The Machine Company, New York, Collier-Macmillan Limited, London, 1970.
[31] C. H. Lee and T. Altan, “Influence of flow stress and friction upon metal flow in upset forging of rings and cylinders”, Journal of Engineering for Industry, Transactions of the American Society of Mechanical Engineers, Vol.31, pp.775-782, 1972.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top