(3.238.88.35) 您好!臺灣時間:2021/04/11 19:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:柴閎展
研究生(外文):Hung-Chan Chai
論文名稱:以改良式蛙跳演算法進行多閥值影像分割與支援向量機分類應用
論文名稱(外文):The Applications of modified shuffled frog-leaping optimization algorithm to the image thresholding and the classifications of support vector machines
指導教授:洪明輝洪明輝引用關係
指導教授(外文):Ming-Huwi Horng
學位類別:碩士
校院名稱:國立屏東商業技術學院
系所名稱:資訊工程系(所)
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:67
中文關鍵詞:支援向量機影像閥值混合蛙跳優化
外文關鍵詞:Shuffled frog leaping optimizationsupport vector machineimage thresholding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:281
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
近年來,生物啟發式演算技術已應用在許多領域上,如圖像處理、神經網路與模式識別。本論文採用在生物啟發式演算中一項較新的技術,名為混合青蛙跳演算法,並應用在影像分割與支援向量機的訓練過程。其實驗結果驗證了使用混合蛙跳演算法於影像的多閥值分割處理上可獲得有效的結果,以及在支援向量機的架構中能提供更高的分類確率。
In recent years the technology of bio-inspired computation have been applied to many fields such as the image processing, neural network and pattern recognition. The shuffled frog-leaping algorithm is a new method among the bio-inspired computation. This thesis applied this method in image segmentation and the training of support vector machine. Experimental results showed that the proposed method can effectively segment the image in multilevel thresholding and can construct the support vector machine in high correct classification rate.
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
CHAPTER 1 1
緒論 1
1.1 研究動機與目的 1
1.1.1 影像多閥值分割 1
1.1.2 支援向量機 2
1.2 文獻探討 3
1.2.1 影像閥值 3
1.2.2 支援向量機的應用與改進 4
1.3 研究方法簡介 5
1.3.1 演化式運算 5
1.3.2 混合蛙跳演算法 6
1.3.3 改良式混合蛙跳演算法 9
1.4 論文結構簡介 9
CHAPTER 2 10
運用混合蛙跳演算法於影像多閥值分割 10
2.1 簡介 10
2.2 熵值最大化與影像多閥值優化 10
2.3 混合蛙跳演算法應用於影像多閥值優化 11
CHAPTER 3 14
運用混合蛙跳演算法於非線性支援向量機之參數優化 14
3.1 簡介 14
3.2 線性支援向量機 14
3.3 非線性支援向量機 16
3.4 混合蛙跳演算之參數優化 18
3.4.1 實驗設計 18
3.4.2 實驗流程 18
CHAPTER 4 21
實驗結果 21
4.1 研究環境簡介 21
4.2 影像多閥值優化實驗結果 21
4.3 支援向量機之參數優化實驗結果 52
CHAPTER 5 53
研究結論與未來展望 53
參考文獻 54
[1] E. Elbeltagi, T. Hegazy, D. Grierson, “A modified shuffled frog-leaping optimization algorithm: applications to project management”, Structure and Infrastructure Engineering, Vol. 3, No. 1, March 2007, 53-60.
[2] J.H. Holland, “Adaptation in natural and artificial systems”, University of Michigan Press: Ann Arbor, 1975.
[3] M.M. Eusuff, K.E. Lansey, “Optimization of Water Distribution Network Design using the Shuffled Frog Leaping Algorithm”, Journal of Water Resources Planning and Management, Vol. 129, No. 3, May/June 2003, 210-225.
[4] N. Otsu, “A threshold selection method for grey level histograms”, IEEE Trans. Syst. Man Cybernet. SMC-9 (1979), 62–66.
[5] T. Pun, “A new method for grey-level picture thresholding using the entropy of the histogram”, Signal Processing, Vol. 2, Issue 3, July 1980, 223-237.
[6] M. Sezgin, B. Sankur, “Survey over image thresholding techniques and quantitative performance evaluation”, Journal of Electronic Imaging, Vol. 13, No. 1, January 2004, 146-165.
[7] K. Hammouche, M. Diaf, P. Siarry, “A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation”, Computer Vision Graphics and Image Understanding 109 (2008), 163-175.
[8] M. Maitra, A. Chatterjee, “A hybrid cooperative–comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding”, Expert Systems with Applications 34 (2008) 1341–1350.
[9] T.W. Jiang, “The Application of Image Thresholding and Vector Quantization Using Honey Bee Mating Optimization”, Master thesis of National PingTung Institute of Commerce, Taiwan, 2009.
[10] C. Cortes, V. Vapnik, “Support-Vector Networks”, Machine Learning 20 (1995), 273-297.
[11] C.J.C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition”, Data Mining and Knowledge Discovery 2, 1998, 121-167.
[12] K. Jonsson, J. Kittler, Y.P. Li, J. Matas, “Support vector machines for face authentication”, Image and Vision Computing, Vol. 20, Issues 5-6, 15 April 2002, 369-375.
[13] D.K. Iakovidis, D.E. Maroulisa, S.A. Karkanisb, P. Papageorgasa, M. Tzivras, “Texture multichannel measurements for cancer precursors’ identification using support vector machines”, Measurement, Vol. 36, Issues 3–4, October–December 2004, 297–313.
[14] M. Awad, Y. Motai, “Dynamic classification for video stream using support vector machine”, Applied Soft Computing, Vol. 8, Issue 4, September 2008, 1314–1325.
[15] M.C. Lee, “Using support vector machine with a hybrid feature selection method to the stock trend prediction”, Expert Systems with Applications 36 (2009) 10896–10904.
[16] S. Tripathi, V.V. Srinivasa, R.S. Nanjundiah, “Downscaling of precipitation for climate change scenarios: A support vector machine approach”, Journal of Hydrology 330 (2006) 621–640.
[17] C.L. Huang, C.J. Wang, “A GA-based feature selection and parameters optimization for support vector machines”, Expert Systems with Applications 31 (2006) 231–240.
[18] S.W. Lin, K.C. Ying, S.C. Chen, Z.J. Lee, “Particle swarm optimization for determination and feature selection of support vector machines”, Expert Systems with Applications 35 (2008) 1817–1824.
[19] X.L. Zhang, X.F. Chen, Z.J. He, “An ACO-based algorithm for parameter optimization of support vector machines”, Expert Systems with Applications, Volume 37, Issue 9, September 2010, Pages 6618-6628.
[20] J.N. Kapur, P.K. Sahoo, A.K.C. Wong, “A new method for gray-level picture thresholding using the entropy of the histogram”, Computer Vision Graphics and Image Understanding 29 (1985), 273-285.
[21] S.L. Salzberg, “On comparing classifiers: Pitfalls to avoid and a recommended approach”, Data Mining and Knowledge Discovery 1 (1997), 317-327.
[22] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz, “UCI Repository of Machine Learning Databases,” Department of Information and Computer Science, University of California, Irvine, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔