(3.230.143.40) 您好!臺灣時間:2021/04/23 15:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:董松青
研究生(外文):Sung-Ching Tung
論文名稱:以案例式推理進行相機產品挑選推薦系統設計
論文名稱(外文):Design of Product Selection for Camera Using Case-based Reasoning
指導教授:李來錫李來錫引用關係
指導教授(外文):LAI-HSI LEE
學位類別:碩士
校院名稱:國立屏東商業技術學院
系所名稱:資訊管理系(所)
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:99
中文關鍵詞:案例式推理相似度計算資訊推薦資訊超載
外文關鍵詞:case-based reasoningsimilarity analysisinformation overloadinformation recommended
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
隨著網際網路的迅速發展,雖然帶來資料蒐集的便利性,但也同時造成資訊超載的情況。因此專家學者們紛紛提出不同的因應之道,希望藉此能有效解決資訊超載的現象,其中研擬資訊推薦機制即是解決方法之一。使用者在種類繁多的相機產品挑選上,也同樣面臨相同的問題,如何快速並有效協助推薦出使用者所需之相機品,即是本研究主要探討的議題。本研究透過案例式推理進行相機產品之推薦,利用案例相似度的比對分析,從過去累積的資料案例中找出最相似的產品案例,對使用者進行推薦的程序並提供二手交易之價格。如此一來,不但能達到快速以及節省時間的目的也能提供多元的資訊以供使用者參考。最後,本研究以模擬使用者情境方式,進行推理的步驟,列舉出相似度最高之前十筆案例向使用者進行推薦。研究結果顯示,資訊推薦機制搭配案例式推理法的輔助可達成節省時間並增加效率。
Internet has been developed rapidly and it brings high convenience for information collection. However, it causes a serious problem of information overloading. To solve the problem researchers have proposed different methods. Information recommendation system is one of those popular methods. The information overloading problem also occurs in camera selection. This study aims to solve the selection problem to recommend proper camera using case-based reasoning. This research find out the most similar case from the case-based reasoning and information in the past by similarity analysis, which giving the helpful process and second-handed price. As a result, this way not only saves time, but also provides users with much related information for their reference. Finally, this research simulates the situation of users so as to reason step by step and lists the top ten of similar cases to users. The result shows that Information Recommendation System could save time and increase work efficiency with case-based reasoning.
目錄
摘要 I
Abstract II
誌謝 III
目錄 V
表索引 VII
圖索引 VIII
1、 緒論
1.1 研究背景與動機 1
1.2 研究目的
1.3 研究架構
2、 文獻探討
2.1 資訊推薦
2.2 案例式推理
2.3 消費者(使用者)採購行為
3、 研究方法
3.1 研究流程
3.2 資料蒐集
3.3 案例式推理
4、 資訊推薦系統設計雛形
4.1 系統目的
4.2 系統架構
4.3 系統流程
4.4 系統畫面展示
5、 結論與建議
5.1 研究結論
5.2 建議
參考文獻
中文部分:
1. 何正得、朱科銘(2007),「新產品開發之案例式推理系統研究」,工程
科技與教育學刊,第四卷,第二期,第183-210 頁。
2. 周寬怡(2004),「以內容分析法獲取推薦系統中使用者Profile 之研究」,
碩士論文,國立成功大學資訊管理研究所,台南。
3. 林峰田、李佳昀(2004),「地震防救災文獻案例式查詢系統」,都市與
計劃,第二十七卷,第一期,第65-80 頁。
4. 苑守慈、王詩翔、張瑋倫(2008),「智慧型老人居家照護—以替換調適
模式之案例式推理為基礎」,資訊管理學報,第十五卷,第二期,第
1-25 頁。
5. 張正杰(2010),就是愛構圖,攝影家手札科技有限公司,台北市。
6. 張偉斌、吳振龍、紀櫻珍、黃育文、劉德明(2006),「案例推理法增進
乳癌診斷率」,北市醫學雜誌,第三卷,第十一期,第78-84 頁。
7. 許家成、蔡博文(2007),「案例式推理於地理資訊系統之應用—以颱風
路徑預測為例」,中興工程,第九十四期,第101-108 頁。
8. 黃如慧(2004),「一個預測線上顧客產品知識程度之方法」,碩士論文,
朝陽科技大學資訊管理研究所,台中。
9. 楊振興(2002),「應用案例式推理建構機車維修管理系統」,碩士論文,
國立台北科技大學生產系統工程與管理研究所,台北。
10. 楊逸仁、林子建、何正得(2010),「模具設計之案例式推理系統建構」,
工程科技與教育學刊,第七卷,第四期,第560-578 頁。
11. 龔旭陽、顧浩翔、蔡光榮、黃崇明(2004),「行動化即時防災與通報系
統之設計與探討-應用在土石流災害」,資訊管理學報,第十一卷,
第四期,第29-50 頁。
英文部分:
1. Adomavicius, G. and Tuzhilin A. (2003), Recommendation technologies:
survey of current methods and possible extensions, Stern School of
Business, New York University.
2. Adomavicius, G. and Tuzhilin, A. (2005), "Toward the next generation of
recommender systems: a survey of the state-of-the-art and possible
extensions", IEEE Transactions on Knowledge and Data Engineering,
Vol. 17, No. 6, pp. 734-749.
3. Ahn, H. and Kim, K. J. (2009), "Global optimization of case-based
reasoning for breast cytology diagnosis," Expert Systems with
Applications, Vol. 36, pp. 724-734.
4. Albadvi, A. and Shahbazi M. (2009), "A hybrid recommendation
technique based on product category attributes," Expert Systems with
Applications, Vol. 36, pp. 11480-11488.
5. Balabanovic, M. and Shoham, Y. (1997), " Fab: content-based
collaborative recommendation," Communications of the ACM, Vol. 40,
No. 3, pp. 66-72.
6. Barletta, R. (1991), "An introduction to case-based reasoning," AI Expert,
Vol. 6, No. 8, pp. 42-49.
7. Belkin, N. and Croft, B. (1992), "Information filtering and information
retrieval," Communications of the ACM, Vol. 35, No. 12, pp. 29-37.
8. Blanco-Fernandez, Y., Lopez-Nores, M., Gil-Solla, A., Ramos-Cabrer,
M., and Pazos-Arias, J. J. (2011), "Exploring synergies between
content-based filtering and spreading activation techniques in
knowledge-based recommender systems," Information Sciences, Vol. 181,
pp. 4823-4846.
9. Boury-Brisseta, A. C. and Tourigny, N. (2000), "Knowledge
capitalisation through case bases and knowledge engineering for road
safety analysis," Knowledge-Based Systems, Vol. 13, pp. 297-305.
10. Campos, L. M. D., Fernandez-Luna, J. M., Huete, J. F., and
Rueda-Morales, M. A. (2010), "Combining content-based and
collaborative recommendations: a hybrid approach based on bayesian
networks," International Journal of Approximate Reasoning, Vol. 51, pp.
785-799.
11. Castro, J. L., Navarro, M., Sanchez, J.M., and Zurita, J.M. (2011), "
Introducing attribute risk for retrieval in case-based reasoning,"
Knowledge-Based Systems, Vol. 24, pp. 257-268.
12. Chang, P. C., Liu, C. H., and Lai, R. K. (2008), "A fuzzy case-based
reasoning model for sales forecasting in print circuit board industries,"
Expert Systems with Applications, Vol. 34, pp. 2049-2058.
13. Chen, D. N., Hu, P. J., Kuo, Y. R., and Liang, T. P. (2010), "A web-based
personalized recommendation system for mobile phone selection: design,
implementation, and evaluation," Expert Systems with Applications, Vol.
37, pp. 8201-8210.
14. Cheung, K. W., Tsui, K. C., and Liu, J. (2004), "Extended latent class
models for collaborative recommendation," IEEE Transactions on
Systems, Vol. 34, No. 1, pp. 143-148.
15. Cho, Y. H. and Kim, J. K. (2004), "Application of web usage mining and
product taxonomy to collaborative recommendations in e-commerce,"
Expert Systems with Applications, Vol. 26, pp. 233-246.
16. Claypool, M. and Gokhale, A. (1999), "Combining content-based and
collaborative filters in an online newspaper," In Proceedings of ACM
SIGIR Workshop on Recommender Systems.
17. Copeland, T., Koller, T., and Murrin, J. (1994), Measuring and managing
the value of companies, 2nd Edition, Wiley.
18. Engel, J. F., Kollat, D. T., and Blackwell, R. D. (1982), Consumer
Behavior, 4th edition, Chicago.
19. Fritz, H. G. (1993), "Case-based reasoning applying past experience to
new problems," Information Systems Management, Vol. 10, No. 2, pp.
77-80.
20. Haubl, G. and Trifts, V. (2000), "Consumer decision making in online
shopping environments: the effects of interactive decision aids,"
Marketing Science, Vol. 19, No. 1, pp. 4-21.
21. Herlocker, J. L., Konstan, J. A., Borchers, A., and Riedl, J. (1999), "An
algorithmic framework for performing collaborative filtering," 22nd
annual international ACM SIGIR conference on Research and
development in information retrieval, pp. 230-237.
22. Hung, L. P. (2005), "A personalized recommendation system based on
product taxonomy for one-to-one marketing online," Expert Systems with
Applications, Vol. 29, pp. 383-392.
23. Jadhav, A. S. and Sonar, R. M. (2011), "Framework for evaluation and
selection of the software packages: a hybrid knowledge based system
approach," The Journal of Systems and Software, Vol. 84, pp. 1394-1407.
24. Kaedi, M. and Ghasem-Aghaee, N. (2011), "Biasing bayesian
optimization algorithm using case based reasoning," Knowledge-Based
Systems, Vol. 24, pp. 1245-1253.
25. Kalakota, R. and Whinston, A. B. (1996), Froniters of Electronic
Commerce, Addison-Wesley.
26. Kim, J. K., Kim, H. K., and Cho, Y.H. (2008), "A user-oriented contents
recommendation system in peer-to-peer architecture," Expert Systems
with Applications, Vol. 34, pp. 300-312.
27. Krulwich, B. and Burkey, C. (1996), "Learning user information interests
through extraction of semantically significant phrases," Proceedings of
the AAAI Spring symposium on Machine Learning in Information Access.
28. Kwon, K., Cho, J., and Park, Y. (2009), "Multidimensional credibility
model for neighbor selection in collaborative recommendation," Expert
Systems with Applications, Vol. 36, pp. 7114-7122.
29. Lai, C. H. and Liu, D. R. (2009), "Integrating knowledge flow mining and
collaborative filtering to support document recommendation," The
Journal of Systems and Software, Vol. 82, pp. 2023-2037.
30. Lang, K. (1995), "Newsweeder: learning to filter netnews," Proceedings
of the 12th International Conference on Machine Learning, pp. 331-339.
31. Lawrence, R. D., Almasi, G. S., Kotlyar, V., Viveros, M. S., and Duri, S.
S. (2001), "Personalization of supermarket product recommendations,"
Data Mining and Knowledge Discovery, Vol. 5, pp. 11-32.
32. Lee, D. S., Kim, G. Y., and Cho, H. I. (2003), "A web-based
collaborative filtering system," Pattern Recognition, Vol. 36, pp.
519-526.
33. Lee, Y. H., Hu, J. H., Cheng, T. H., and Hsieh, Y. F. (2012), "A
cost-sensitive technique for positive-example learning supporting
content-based product recommendations in B-to-C e-commerce,"
Decision Support Systems, Vol. 53, pp. 245-256.
34. Li, D., Lv, Q., Xie, X., Shang, L., Xia, H., Lu, T., and Gu, N. (2012),
"Interest-based real-time content recommendation in online social
communities," Knowledge-Based Systems, Vol. 28, pp. 1-12.
35. Li, H. and Sun, J. (2008), "Ranking-order case-based reasoning for
financial distress prediction," Knowledge-Based Systems, Vol. 21, pp.
868-878.
36. Li, S. T. and Ho, H. F. (2009), "Predicting financial activity with
evolutionary fuzzy case-based reasoning," Expert Systems with
Applications, Vol. 36, pp. 411-422.
37. Linden, G., Smith, B., and York, J. (2003), "Amazon.com
recommendations: item-to-item collaborative filtering," Internet
Computing IEEE, Vol. 7, No. 1, pp. 76-80.
38. Liu, C. H., Chen, L. S., and Hsu, C. C. (2008), "An association-based
case reduction technique for case-based reasoning," Information Sciences,
Vol. 178, pp. 3347-3355.
39. Liu, D. R. and Liou, C. H. (2011), "Mobile commerce product
recommendations based on hybrid multiple channels," Electronic
Commerce Research and Applications, Vol. 10, pp. 94-104.
40. Liu, D. R. and Shih, Y. Y. (2005), "Hybrid approaches to product
recommendation based on customer lifetime value and purchase
preferences," The Journal of Systems and Software, Vol. 77, pp. 181-191.
41. Liu, D. R., Lai, C. H., and Chiu, H. (2011), "Sequence-based trust in
collaborative filtering for document recommendation," Int. J.
Human-Computer Studies, Vol. 69, pp. 587-601.
42. Mehdi, M. and Owrang, O. (1998), "Case discovery in case-based
reasoning," Information System Management, Vol. 15. No. 1, pp. 74-78.
43. Middleton, S. E., Shadbolt, N. R., and De-Roure, D. C. (2004),
"Ontological user profiling in recommender system," ACM Transactions
on Information Systems (TOIS), Vol. 22, No. 1, pp. 54-88.
44. Mock, K. J. and Vemuri V. R. (1997), "Information filtering via hill
climbing, wordnet, and index patterns," Information Processing &
Management, Vol. 33, No. 5, pp. 633-644.
45. Mooney, R. J. and Roy, L. (2000), "Content-based book recommending
using learning for text categorization," fifth ACM conference on Digital
libraries, pp. 195-204.
46. Perugini, S., Concalves, M. A., and Fox, E. A. (2004), "Recommender
systems research: a connection-centric survey," Journal of Intelligent
Information Systems, Vol. 23, No. 2, pp. 107-143.
47. Rashid, A. M., Karypis, G., and Riedl, J. (2008), "Learning preferences of
new users in recommender systems: an information theoretic approach, "
ACM SIGKDD Explorations Newsletter, Vol. 10, No. 2, pp. 99-100.
48. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. (1994),
"Grouplens: an open architecture for collaborative filtering of netnews,"
ACM conference on Computer supported cooperative work, pp. 175-186.
49. Rucker, J. and Polanco, M. J. (1997), "Personalized navigation for the
web," Communications of the ACM, Vol. 40, No. 3, pp. 73-75.
50. Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2000), "Analysis of
recommendation algorithms for e-commerce," Proceedings of the 2nd
ACM conference on Electronic commerce, pp. 158-167.
51. Schafer, J. B., Konstan, J. A., and Riedl, J. (2000), "E-commerce
recommendation applications," Journal of Data Mining and Knowledge
Discovery, Vol. 5, No. 1, pp. 115-152.
52. Schank, R. (1982), Dynamic memory: a theory of learning in computers
and peple, Cambridge University Press, New York.
53. Schoefegger, K., Seitlinger, P., and Ley, T. (2010), "Towards a user
model for personalized recommendations in work-integrated learning: a
report on an experimental study with a collaborative tagging system,"
Procedia Computer Science, Vol. 1, pp. 2829-2838.
54. Senecal, S. and Nantel, J. (2004), "The influence of online product
recommendations on consumers online choices," Journal of Retailing,
Vol. 80, pp. 159-169.
55. Shardanand, U. and Maes, P. (1995), "Social information filtering:
algorithms for automating word of mouth," Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 210-217.
56. Shih, Y. Y. and Liu D. D. (2008), "Product recommendation approaches:
collaborative filtering via customer lifetime value and customer demands,
" Expert Systems with Applications, Vol. 35, pp. 350-360.
57. Ting, S. L., Wang, W. M., Kwok, S.K., Tsang, H. C., and Lee, W. B.
(2010), "Racer: rule-associated case-based reasoning for supporting
general practitioners in prescription making," Expert Systems with
Applications, Vol. 37, pp. 8079-8089.
58. Tsai, C. Y. and Chiu, C. C. (2007), "A case-based reasoning system for
PCB principal process parameter identification," Expert Systems with
Applications, Vol. 32, No. 1183-1193.
59. Tseng, H. E., Chang, C. C., and Chang, S. H. (2005), "Applying
case-based reasoning for product configuration in mass customization
environments," Expert Systems with Applications, Vol. 29, pp. 913-925.
60. Wang, H. C. and Wang, H. S. (2005), "A hybrid expert system for
equipment failure analysis," Expert Systems with Applications, Vol. 28,
pp. 615-622.
61. Wasfi, A. M. A. (1999), "Collecting user access patterns for building user
profiles and collaborative filtering," 4th international conference on
Intelligent user interfaces, pp. 57-64.
62. Watson, I. (1999), "Case-based reasoning is a methodology not a
technology," Knowledge-Based Systems, Vol. 12, pp. 303-308.
63. Xiong, N. (2011), "Learning fuzzy rules for similarity assessment in
case-based reasoning," Expert Systems with Applications, Vol. 38, pp.
10780-10786.
64. Yager, R. R. (2003), "Fuzzy logic methods in recommender systems,"
Fuzzy Sets and Systems, Vol. 136, pp. 133-149.
65. Yang, H. L. and Wang, C. S. (2008), "Two stages of case-based
reasoning – integrating genetic algorithm with data mining mechanism,"
Expert Systems with Applications, Vol. 35, pp. 262-272.
66. Yang, W., Wang, Z., and You, M. (2004), "An improved collaborative
filtering method for recommendations generation," Proceedings of the
2004 IEEE International Conference on Systems, Vol. 5, pp. 4135-4139.
67. Resnick, P., (1997), "Recommender systems," Communications of the
ACM, Vol. 40, No. 3, pp. 56-58.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔