跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/24 04:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉鎮宇
研究生(外文):Cheng-Yu Liu
論文名稱:聚山梨醇酯40 修飾之金奈米粒子以比色法偵測氰化物並應用於監控蔬果內生氰性醣苷
論文名稱(外文):Colorimetric Assay for Cyanide and Application in MonitoredCyanogenic Glycoside Using Polysorbate 40-Stabilized GoldNanoparticles
指導教授:曾韋龍曾韋龍引用關係
指導教授(外文):Wei-Lung Tseng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:中文
論文頁數:93
中文關鍵詞:杏仁苦苷生氰性醣苷亞麻苦苷氰化物金奈米粒子
外文關鍵詞:LinamarinAmygdalinCyanogenic glycosideCyanideAuNPs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:319
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
本篇研究使用修飾有聚山梨醇酯40(Polysorbate 40)之金奈米粒子(Gold nanoparticles, AuNPs),藉由其特殊光學性質,開發簡單且選擇性對氰化物(Cyanide)及內源性生物氰化物(Endogenous biological cyanide)偵測之奈米感測器。中性的界面活性劑聚山梨醇酯40分子藉由親水端包覆於AuNPs表面,使其穩定分散的存在高鹽類溶液中。當溶液有氰化物時,會與AuNPs作用生成AuCN(s)固體沉積於AuNPs表面,以及形成Au(CN)2-錯合物將AuNPs侵蝕溶解至溶液中。當AuNPs被氰化物侵蝕後,表面的聚山梨醇酯40分子會由AuNPs表面脫附,使AuNPs裸露於高鹽類環境下,導致AuNPs表面電荷被中和發生聚集的現象。研究中分別藉由表面輔助雷射脫附-飛行時間質譜儀(SALDI-TOF-MS)及感應耦合電漿質譜儀(ICP-MS)證明有AuCN(s)在AuNPs的表面生成與Au(CN)2-溶解於溶液中。
一、開發聚山梨醇酯40修飾之金奈米粒子以比色法偵測水樣中氰化物及生氰性醣苷:本篇在開發修飾有聚山梨醇酯40之金奈米粒子,於勻相且高鹽類環境下對溶液中的氰化物以及生氰性醣苷(Cyanogenic glycoside)進行選擇性偵測。在水樣中氰化物的偵測線性範圍為500—2500 nM最低偵測濃度(Minimum Detecatable Concentration, MDC)為500 nM,自來水樣品的偵測範圍為750—2500 nM最低偵測濃度為500 nM此偵測靈敏度以低於WHO所制定的飲用水中氰化物限制的最高濃度,亞麻苦苷(Linamarin)酸水解後的溶液偵測範圍為2—10 μM偵測最低濃度為1 μM。由於氰化氫的沸點為25.6℃,可藉由加熱的方式觀察奈米粒子由聚集至分散的程度,應用在監測食物中氰化物的移除率,最後我們在樹薯中以標準添加的方式對其內含的亞麻苦苷進行定量分析。
二、聚山梨醇酯40之金奈米粒子以比色法監控蔬果內生氰性醣苷之半抑制/解毒濃度及定量分析:本篇研究延續前篇的分析方法,修飾聚山梨醇酯40之AuNPs,在含有氰化物的溶液中因AuNPs表面受到侵蝕,使界面活性劑脫附導致AuNPs表面電荷中和產生聚集的現象,將此奈米感測器應用於計算兩種不同官能基之生氰醣苷—杏仁苦苷 (Amygdalin)及亞麻苦苷的酸水解效率,並且對多種蔬果內的生氰性醣苷進行定量分析、監控加熱時間對氰化物的移除率。當氰化物之解毒劑分子—硫代硫酸鈉(Sodium thiosulfate)及維他命B12a(Vitamin B12a)與氰化物反應後,其不具毒性的產物硫氰酸鹽(Thiocyanate)及維他命B12(Vitamin B12)不會和AuNPs作用,藉此能夠抑制AuNPs聚集現象,在高鹽類環境中維持分散狀態。隨解毒劑分子加入的濃度越高氰化物被反應的量越多,AuNPs特徵吸收峰會由一開始聚集的650 nm藍位移至分散的520 nm。硫代硫酸鈉與維他命B12a和10 μM的氰化物作用後,半抑制/解毒濃度(IC50)分別為1.04 μM及 2.15 μM。在酸水解的環境中硫代硫酸鈉對氰化物的選擇性優於維他命B12a,不會受到水解基質的影響,硫代硫酸鈉對兩種濃度10 μM生氰醣苷的IC50分別為杏仁苦苷—1.06 μM、亞麻苦苷—1.82 μM。最後將硫代硫酸鈉對本系統解毒的效果應用於測定蔬果內生氰性醣苷之半解毒濃度。
1. Colorimetric Assay for Cyanide and Cyanogenic Glycoside Using Polysorbate 40-Stabilized Gold Nanoparticles.
This study described a simple and homogeneous method for the selective and sensitive detection of cyanide and endogenous biological cyanide using polysorbate 40-stabilized gold nanoparticles (PS 40-AuNPs). Neutral PS 40 molecules enable citrate-capped AuNPs to stabilize in a high-salinity solution. The addition of cyanide to a solution of PS 40-AuNPs resulted in the formation of AuCN(s) on the NP surface and Au(CN)2– in an aqueous solution. The removal of PS 40 molecules from the NP surface rendered the AuNPs unstable in a high-salinity solution, leading to NP aggregation. The formation of AuCN(s) and Au(CN)2– was demonstrated by means of surface-assisted laser desorption/ionization time of flight mass spectrometry and inductively coupled plasma mass spectroscopy, respectively. PS 40-AuNPs were capable of selectively detecting cyanide at concentrations as low as 500 nM. Additionally, the minimum detectable concentration of linamarin (cyanogenic glycoside) was measured to be 1 uM using PS 40-AuNPs. This probe was successfully applied to the determination of cyanide in tap water, the monitor of cyanide removal during food processing, and the quantification of linamarin in cassava root.

2. Colorimetric detoxification and monitored cyanogenic glycoside in plants/fruit using polysorbate 40-stabilized gold nanoparticles.
Developing rapid, highly sensitive, and selective detection/inhibition of cyanide/cyanogenic glycoside from plants and foods is extremely essential for human life safety. Here we report a strategy for the colormetric visualization of cyanogenic glycoside using polysorbate 40 stabilized gold nanoparticle (PS 40-AuNPs). Two cyanogenic glycosides (amygdalin and linamarin) were chosen to determine the efficiency of acid hydrolysis. According to US Department and Health and Human Services standard cyanide antidote kit, sodium thiosulfate and hydroxocobalamin (vitamin B12a) seems to be an appropriate antidote for treatment cyanide poisoning victims. The addition of thiosulfate/vitamin B12a to a solution of cyanide/cyanogenic glycosides resulted in the formation of thiocyanate/vitamin B12 in an aqueous solution, which couldn’t etch PS 40-AuNPs and inhibit the aggregation of PS 40-AuNPs in a high-salt solution. The inhibition/detoxification efficiency (IC50) of thiosulfate and vitamin B12a were studied for treatment of cyanide and hydrolyzed cyanogenic glycoside. This probe was also used to monitor the removal of cyanide, estimated the concentration of cyanide and detoxification of cyanide by thiosulfate in plants/fruit sample.
目錄
中文摘要 i
英文摘要 iii
目錄 v
圖表目錄 vii
縮寫表 ix
第一章 開發聚山梨醇酯40修飾之金奈米粒子以比色法偵測水樣中氰化物及生氰性醣苷
一、 前言 1
二、 實驗步驟 6
2.1 藥品及樣品製備 6
2.2 儀器裝置 8
2.3 金奈米粒子之合成 10
2.4 奈米粒子之特徵 10
2.5 樣品製備 11
2.6 真實樣品分析 12
三、 結果與討論 13
3.1 感測機制 13
3.2 證明AuCN(s)及Au(CN)2–生成 17
3.3 PS 40-AuNPs選擇性探討 19
3.4 PS 40-AuNPs靈敏度探討及水樣真實樣品的應用 21
3.5 PS 40-AuNPs應用於偵測樹薯樣品內亞麻苦苷 30
四、 結論 33
五、 參考文獻 34
第二章 聚山梨醇酯40之金奈米粒子以比色法監控蔬果內生氰性醣苷之半抑制/解毒濃度及定量分析
一、 前言 41
二、 實驗步驟 48
2.1 藥品及樣品製備 48
2.2 儀器裝置 50
2.3 金奈米粒子之合成 51
2.4 酸水解生氰性醣苷步驟 51
2.5 奈米粒子之特徵 52
2.6 樣品製備 53
2.7 真實樣品分析 54
三、 結果與討論 56
3.1 感測機制 56
3.2 證明AuCN(s)及Au(CN)2–生成 58
3.3 探討酸水解生氰性醣苷的水解效率 60
3.4 硫代硫酸鈉及維他命B12a對氰化物及生氰性醣苷解毒效率探討 63
3.5 監控蔬果真實樣品的移除率、定量分析及解毒效率 68
四、 結論 76
五、 參考文獻 77
第一章
1.Lindasy, A. E.; Greenbaum, A. R.; O’Hare, D. “Analytical Techniques for Cyanide in Blood and Published Blood CyanideConcentrations from Healthy Subjects and Fire Victims” Anal. Chim. Acta 2004, 511, 185-195.
2.Panda, M.; Robinson, N. C. “Kinetics and Mechanism for the Binding of HCN to Cytochrome C Oxidase” Biochemistry 1995, 34, 10009-10018.
3.Solomonson, L. P. In Cyanide in Biology; Vennesland, B., Conn, E. E., Knowles, C. J., Westley, J., Wissing, F., Eds.; Academic Press: London, 1981; pp11-28.
4.Padmaja, G. “Cyanide Detoxification in Cassava for Food and Feed Uses” Crit. Rev. Food Sci. 1995, 35, 299-339.
5.Nhassico, D.; Muquingue, H.; Cliff, J.; Cumbana, A.; Bradbury, J. H. “Rising African Cassava Production, Diseases due to High Cyanide Intake and Control Measures” J. Sci. Food Agric. 2008, 88, 2043-2049.
6.World Health Organization. Background Document for Development of WHO Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2007.
7.Pesce, L. D. Cyanides in Kirk-Othmer Encyclopedia of Chemical Technology; Wiley: New York, 1993; Vol. 7, pp 326-327.
8.Shinozuka, F.; Stock, J. T. “Voltammetry and Amperometric Titrimetry of Cyanide at the Rotating Platinum Microelectrode” Anal. Chem. 1962, 34, 926-930.
9.Abbaspour, A.; Asadi, M.; Ghaffarinejad, A.; Safaei, E. “A Selective Modified Carbon Paste Electrode for Determination of Cyanide Using Tetra-3,4-pyridinoporphyrazinatocobalt(II)” Talanta. 2005, 66, 931-936.
10.Liu, G.; Liu, J.; Hara, K.; Wang, Y.; Yu, Y.; Gao, L.; Li, L. “Rapid Determination of Cyanide in Human Plasma and Urine by Gas Chromatography-Mass Spectrometry with Tow Step Derivatization” J. Chromatogr. B 2009, 877, 3054-3058.
11.Boadas-Vaello, P.; Jover, E.; Llorens, J.; Bayona, J. M. “Determination of Cyanide and Volatile Alkylnitriles in Whole Blood by Headspace Solid-Phase Microextraction and Gas Chromatography with Nitrogen Phosphorus Detection” J. Chromatogr. B 2008, 870, 17-21.
12.Sornyotha, S.; Kyu, K. L.; Ratanakhanokchai, K. “Purification and Detection of Linamarin from Cassava Root Cortex by High Performance Liquid Chromatography” Food Chem. 2007, 104, 1750-1754.
13.Akiyama, H.; Toida, T.; Sakai, S.; Amakura, Y.; Kondo, K.; Sugita-Konishi, Y.; Maitani, T. “Determination of Cyandie and Thiocyanate in Sugihiratake Mushroom Using HPLC Method with Fluorometric Detection” J. Health Sci. 2006, 52, 73-77.
14.Meng, L.; Liu, X.; Wang, B.; Shen, G. “Simultaneous Derivatization and Extraciton of Free Cyanide in Biological Samples with Home-Made Hollow Fiber-Proetcted Headspace Liquid-Phase Microextraction Followed by Capillary Electrophoresis with UV Detection” J. Chromatogr. B 2009, 877, 3645-3651.
15.Jermak, S.; Pranaityte, B.; Padarauskas, A. “Headspace Single-Drop Microextraciton with in-Drop Derivatization and Capillary Electrophoretic Determination for Free Cyanide Analysis” Electrophoresis 2006, 27, 4538-4544.
16.Papezova, K.; Glatz, Z. “Determinaiton of Cyanide in Microliter Sample by Capillary Electrophoresis and in-Capillary Enzymatic Reaction with Rhodanese” J. Chromatogr. A 2006, 1120, 268-272.
17.Xu, Z.; Chen, X.; Kim, H. N.; Yoon, J. “Sensors for the Optical Detection of Cyanide Ion” Chem. Soc. Rev. 2010, 39, 127-137.
18.Ma, J.; Dasgupta, P. K. “Recent Developments in Cyanide Detection: A Review” Anal. Chim. Acta 2010, 673, 117-125.
19.Mark, K. K. W.; Yanase, H.; Renneberg, R. “Cyanide Fishing and Cyanide Detection in Coral Reef Fish Using Chemical Tests and Biosensors” Biosens. Bioelectron. 2005, 20, 2581-2593.
20.Mannel-Croise, C.; Zelder, F. “Side Chains of Cobalt Corrinoids Control the Sensitivity and Selectivity in the Colorimetric Detection of Cyanide” Inorg. Chem. 2009, 48, 1272-1274.
21.Mannel-Croise, C.; Probst, B.; Zelder, F. “A Straightforward Method for the Colorimetric Detection of Endogenous Biological Cyanide” Anal. Chem. 2009, 81, 9493-9498.
22.Blackledge, W. C.; Blackledge, C. W.; Griesel, A.; Mahon, S. B.; Brenner, M.; Pilz, R. B.; Boss, G. R. “New Facile Method to Measure Cyanide in Blood” Anal. Chem. 2010, 82, 4216-4221.
23.Zeng, Q.; Cai, P.; Li, Z.; Qin, J.; Tang, B. Z. “An Imidazole-Functionalized Polyacetylene:Convenient Synthesis and Selective Chemosensor for Metal Ions and Cyanide” Chem. Commun. 2008, 1094-1096.
24.Chung, S. Y.; Nam, S. W.; Lim, J.; Park, S.; Yoon, J. “A Highly Selective Cyanide Sensing in Water Via Fluorescence Change and Its Application to in Vivo Imaging” Chem. Commun. 2009, 2866-2868.
25.Touceda-Varela, A.; Stevenson, E. I.; Galve-Gasion, J. A.; Dryden D. T. F.; Mareque-Rivas, J. C. “Selective Turn-On Fluorescence Detection of Cyanide in Water Using Hydrophobic CdSe Quantum Dots” Chem. Commun. 2008, 1998-2000.
26.Shang, L.; Zhang, L.; Dong, S. “Turn-On Fluorescent Cyanide Sensor Based on Copper Ion-Modified CdTe Quantum Dots” Analyst 2009, 134, 107-113.
27.Cho, D. G.; Kim, J. H.; Sessler, J. L. “The Benzil-Cyanide Reaction and Its Application to the Development of a Selective Cyanide Anion Indicator” J. Am. Chem. Soc. 2008, 130, 12163-12167.
28.Kwon, S. K.; Kou, S.; Kim, H. N.; Chen, X.; Hwang, H.; Nam, S. W.; Kim, S. H.; Swamy, K.; Park, S.; Yoon, J. “Sensing Cyanide Ion via Fluorescent Change and Its Application to the Microfluidic System” Tetrahedron Lett. 2008, 49, 4102-4105.
29.Pal, T.; Ganguly, A.; Maity, D. S. “Determination of Cyanide Based Upon Its Reaction with Colloidal Silver in the Presence of Oxygen ” Anal. Chem. 1986, 58, 1564-1566.
30.McCarthy, A. J.; Coleman, R. G.; Nicol, M. J. “The Mechanism of the Oxidative Dissolution of Colloidal Gold in Cyanid Media ” J. Electrochem. Soc. 1998, 145, 408-414.
31.Ghosh, S. K.; Pal. T. “Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles:From Theory to Applications” Chem. Rev. 2007, 107, 4797-4862.
32.Yuan, P.; Walt, D. R. “Calculation for Fluorescence Modulation by Absorbing Species and Its Application to Measurements Using Optical Fibers” Anal. Chem. 1987, 59, 2391-2394.
33.Maxwell, D. J.; Taylor, J. R.; Nie, S. “Self-Assembled Nanoparticle Probes for Recognition and Detection of Biomolecules” J. Am. Chem. Soc. 2002, 124, 9606-9612.
34.Chen, S. J.; Chang, H. T. “Nile Red-Adsorbed Gold Nanoparticles for Selective Determinaiton of Thiols Based on Energy Transfer and Aggregation” Anal. Chem. 2004, 76, 3727-3734.
35.Huang, T.; Murray, R. W. “Quenching of [Ru(bpy)3]2+ Fluoresence by Binding to Au Nanoparticles” Langmuir 2002, 18, 7077-7081.
36.Shang, L.; Jin, L.; Dong, S. “Sensitive Turn-On Fluorescnet Detection of Cyanide Based on the Dissolution of Fluorophore Functionalized Gold Nanoparticles” Chem. Commun. 2009, 3077-3079.
37.Shang, L.; Qin, C.; Jin, L.; Wang, L.; Dong, S. “Turn-On Fluorescnet Detection of Cyanide Based on the Inner Filter Effect of Silver Nanoparticles” Analyst 2009, 134, 1477-1482.
38.Shang, L.; Dong, S. “Desing of Fluorescent Assays for Cyanide and Hydrogen Peroxide Based on the Inner Filter Effect of Metal Nanoparticles” Anal. Chem. 2009, 81, 1465-1470.
39.Liu, Y.; Ai, K.; Cheng, X.; Huo, L.; Lu, L. “Gold-Nanocluster-Based Fluorescnet Sensors for Highly Sensitive and Selective Detection of Cyanide in Water” Adv. Funct. Mater. 2010, 20, 951-956.
40.Daniel, M. C.; Astruc, D. “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology” Chem. Rev. 2004, 104, 293-346
41.Jain, P. K.; Eustis, S.; El-sayed, M. A. “Plasmon Coupling in Nanorod Assemblies: Optical Absorption, Discrete Dipole Approximation Simulation, and Exction-Coupling Model” J. Phys. Chem. B 2006, 110, 18243-18253.
42.Lin, C. Y.; Yu, C. J.; Lin, Y. H.; Tseng, W. L. “Colorimetric Sensing of Silver(I) and Mercury(II) Ions Based on and Assembly of Tween 20-Stabilized Gold Nanoparticles” Anal. Chem. 2010, 82, 6830-6837.
43.Huang, C. C.; Tseng, W. L. “Role of Fluorosurfactant-Modified Gold Nanoparticles in Selective Detection of Homocysteine Thiolactione:Remover and Sensor” Anal. Chem. 2008, 80, 6345-6350.
44.Bradbury, J. H.; Egan, S. V.; Lynch, M. J. “Analysis of Cyanide in Cassava Using Acid Hydrolysis of Cyanogenic Glucosides” J. Sci. Food Agric. 1991, 55, 277-290.
45.Jeffrey, M. I.; Ritchie, I. M. “The Leaching and Electrochemistry of Gold in High Purity Cyanide Solutions” J. Electrochem. Soc. 2001, 148, D29-D36.
46.Sawaguchi, T.; Yamada, T.; Okinaka, Y.; Itaya, K. “Electrochemical Scanning Tunneling Microscopy and Ultrahigh-Vacuum Investigation of Gold Cyanide Adlayers on Au(III) Formed in Aqueous Solution” J. Phys. Chem. 1995, 99, 14149-14155.
47.Hesse, E.; Creighton, J. A. “Investigation by Surface-Enhanced Raman Spectroscopy of the Effect of Oxygen and Hydrogen Plasmas on Adsorbate-Covered Gold and Silver Island Films” Langmuir, 1999, 15, 3545-3550.
48.Zamborini, F. P.; Crooks, R. M. “In-Situ Electrochemical Scanning Tunneling Microscopy (ECSTM)Study of Cyanide-Induced Corrosion of Naked and Hexadecyl Mercaptan-Passivated Au(III) ” Langmuir, 1997, 13, 122-126.
49.Jungreis, E. “Microdeterminaiton of Cyanides by Atomic Absorption Spectroscopy”J. Chem. 1969, 7, 583-584.
50.Wang, X. B.; Wang, Y. L.; Yang, J.; Xing, X. P.; Li, J.; Wang, L. S. “Evidence of Significant Covalent Bonding in Au(CN)2–” J. Am. Chem. Soc. 2009, 131, 16368-16370.
51.Su, C. L.; Tseng, W. L. “Gold Nanoparticles as Assisted Matrix for Determining Neutral Small Carbohydrates through Laser Desorption/Ionization Time-of-Flight Mass Spectrometry” Anal. Chem. 2007, 79, 1626-1633.
52.Niidome, Y.; Nakamura, Y.; Honda, K.; Akiyama, Y.; Nishioka, K.; Kawasaki, H.; Nakashima, N. “Characterization of Silver Ions Adsorbed on Gold Nanorods:Surface Analysis by Using Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry” Chem. Commun. 2009, 1754-1756.
53.Wu, H. P.; Yu, C. J.; Lin, C. Y.; Lin, Y. H.; Tseng, W. L. “Gold Nanoparticles as Assisted Matrices for the Detection of Biomolecules in a High-Salt Solution through Laser Desorption/Ionization Mass Spectrometry” J. Am. Soc. Mass Spectrom. 2009, 20, 875-882.
54.Chen, Y. Y.; Chang, H. T.; Shiang, Y. C.; Hung, Y. L.; Chiang, C. K.; Huang, C. C. “Colorimetric Assay for Lead Ions Based on the Leaching of Gold Nanoparticles” Anal. Chem. 2009, 81, 9433-9439.
55.Chen, Y. M.; Cheng, T. L.; Tseng, W. L. “Fluorescence Turn-On Detection of Iodide, Iodate and Total Iodine Using Fluorscein-5-Isothiocyanate-Modified Gold Nanoparticles” Analyst 2009, 134, 2106-2112.
56.Schultz, S.; Smith, D. R.; Mock, J. J.; Schultz, D. A. “Single-Target Molecule Detection with Nonbleaching Multicolor Optical Immunolabes” Proc. Natl. Acad. Sci. USA 2000, 97, 996-1001.
57.Poulton, J. E. “Cyanogenesis in Plants” Plant Physiol. 1990, 94, 401-405.
58.Deng, L.; Chen, C.; Zhou, M.; Guo, S.; Wang, E.; Dong, S. “Integrated Self-Powered Microchip Biosensor for Endogenous Biological Cyanide” Anal. Chem. 2010, 82, 4283-4287.
59.Santana, M. A.; Vasquez, V.; Matehus, J.; Aldao, R. R. “Linamarase Expression in Cassava Cultivars with Roots of Low-and High-Cyanide Content” Plant Physiol. 2002, 129, 1686-1694.

第二章
1.Borron, S.W.; Baud, F.J. “Prospective Study of Hydroxocobalamin for Acute Cyanide Poisoning in Smoke Inhalation” Ann. Emerg. Med. 2007, 49, 794-801.
2.Jermak, S.; Pranaityte, B.; Padarauskas, A. “Headspace Single-Drop Microextraction with In-Drop Derivatization and Capillary Electrophoretic Determination for Free Cyanide Analysis ” Electrophoresis 2006, 27, 4538-4544.
3.Lindsay, A. E.; Greenbaum, A. R.; O’Hare, D. “Analytical Techniques for Cyanide in Blood and Published Blood Cyanide Concentrations from Healthy Subjects and Fire Victims” Anal. Chim. Acta 2004, 511, 185-195.
4.Ma, J.; Dasgupta, P. K. “Cobinamide-Based Cyanide Analysis by Multiwavelength Spectrometry in a Liquid Core Waveguide” Anal. Chem. 2010, 82, 6244-6250.
5.James Martin Center for Nonproliferation Studies. In Chronology of Aum Shinrikyo’s CBW Activities, 2001; http://cns.miis.edu/reports/pdfs/aum_chrn.pdf (accessed March 22, 2011).
6.Suskind, R. The one percent doctrine: Deep inside America’s pursuit of its enemies since 9/11. Simon and Schuster, New York, 2006.
7.Wing, C. A.; Baskin, S. I. “Modifiers of Mercaptopyruvate Sulfurtransferase Catalyzed Conversion of Cyanide to Thiocyanate In Virto” J. Biochem. Mol. Toxic. 1992, 7, 65-72.
8.Hall, A.; Kulig, K.; Rumack, B. “Suspected Cyanide Poisoning in Smoke Inhalation: Complications of Sodium Nitrite Therapy” J. Toxicol. Clin. Toxicol. 1989, 9, 3-9.
9.Baskin, S. I.; Horowitz, A. M.; Nealley, E. W. “The Antidotal Action of Sodium Nitrite and Sodium Thiosulfate against Cyanide Poisoning” J. Clin. Pharmacol. 1992, 32, 368-375.
10.Hantson, P.; Benaissa, L.; Baud, F. “Smoke poisoning” Presse Med. 1999, 28, 1949-1954.
11.Personne, M.; Kulling, P. “Vitamin B12-Variant in Cyanide Poisoning: Hydroxycobalamin is A New Effective Antidote” Lakartidningen 1997, 94, 877-878.
12.Cooke, R. D. “An Enzymatic Assay for the Total Cyanide Content of Cassava” J. Sci. Food Agric. 1978, 29, 345-352.
13.Hosel, W.; Conn, E. E. “The Aglycone Specificity of Plant s-glycosidases” Trends Biochem. Sci. 1982, 7, 219-221.
14.Conn, E. E. “Biosynthesis of Cyanogenic Glycoside” Naturwissenschaften 1979, 66, 28-34.
15.Franz, S.; Naumann, C. M. “Citicular Cavities-Storage Chambers for Cyanoglucoside-Containing Defensive Secretions in Larvae of a Zygaenid Moth” Tissue Cell, 1985, 17, 267-278.
16.Jensen, N. B.; Zagrobelny, M.; Hjerno, K.; Olsen, C. E.; Houghton-Larsen, J.; Borch, J.; Moller, B. L.; Bak, S. “Convergent Evolution in Biosynthesis of Cyanogenic Defence Compounds in Plants and Insects” Nat. Commun. 2011, 2, 273.
17.Rechnitz, G. A.; Llenado, R. “Enzyme Electrode for Amygdalin” Anal. Chem. 1971, 43, 283.
18.Tatsuma, T.; Tani, K.; Oyama, N.; Yeoh, H. H. “Linamarin Sensors: Amperometric Sensing of Linamarin Using Linamarase and Glucose Oxidase” J. Electroanal. Chem. 1996, 407, 155-159.
19.Tatsuma, T.; Tani, K.; Oyama, N. “Linamarin Sensors: Interference-Based Sensing of Linamarin Using Linamarase and Peroxidase” Anal. Chem. 1996, 68, 2946-2950.
20.Cairns,T.; Froberg, J. E.; Gonzales, S.; Langham, W. S.; Stamp, J. J. “Analytical Chemistry of Amygdalin” Anal. Chem. 1978, 50, 317-322.
21.Chassagne, D.; Crouzet, J. C.; Bayonove, C. L.; Baumes, R. L. “Identification and Quantification of Passion Fruit Cyanogenic Clycosides” J. Agric. Food Chem. 1996, 44, 3817-3820.
22.Curtis, A. J.; Grayless, C. C.; Fall, R. “Simultaneous Determination of Cyanide and Carbonyls in Cyanogenic Plants by Gas Chromatography-Electron Capture/Photoionization Detection” Analyst 2002, 127, 1446-1449.
23.Gomez, E.; Burgos, L.; Soriano, C.; Marin, J. “Amygdalin Content inthe Seeds of Several Apricot Cultivars” J. Sci. Food Agric. 1998, 77, 184-186.
24.Sornyotha, S.; Kyu, K. L.; Ratanakhanokchai, K. “Purification and Detection of Linamarin from Cassava Root Cortex by High Performance Liquid Chromatography” Food Chem. 2007, 104, 1750-1754.
25.Isozaki, T.; Matano, Y.; Yamamoto, K.; Kosaka, N.; Tani, T. “Quantitative Determination of Amygdalin Epimers by Cyclodextrin-Modified Micellar Electrokinetic Chromatography” J. Chromatogr. A 2001, 923, 249-254.
26.Yu, L.; Ye, H.; Zheng, L.; Chen, L.; Chu, K.; Liu, X.; Xu, X.; Chen, G. “Determination of the Epimerization Rate Constant of Amygdalin by Microemulsion Electrokinetic Chromatography” Electrophoresis 2011, 32, 218-222.
27.Bradbury, J. H.; Egan, S. V.; Lynch, M. J. “Analysis of Cyanide in Cassava Using Acid Hydrolysis of Cyanogenic Glucosides” J. Sci. Food Agric. 1991, 55, 277-290.
28.Lambert, J. L.; Ramasamy, J.; Paukstells, J. V. “Stable Reagents for the Colorimetric Determination of Cyanide by Modified Konig Reactions” Anal. Chem. 1975, 47, 916-918.
29.Egan, S. V.; Yeoh, H. H.; Bradbury, J. H. “Simple Picrate Paper Kit for Determination of the Cyanide Potenital of Cassava Flour” J. Sci. Food Agric. 1998, 76, 39-48.
30.Bradbury, M. G.; Egan, S. V.; Bradbury, J. H. “Picrate Paper Kits for Determination of Total Cyanogens in Cassava Roots and all Forms of Cyanogens in Cassava Products” J. Sci. Food Agric. 1999, 79, 593-601.
31.Haque, M. R.; Bradbury, J. H. “Total Cyanide Determination of Plants and Foods Using the Picrate and Acid Hydrolysis Methods” Food Chem. 2002, 77, 107-114.
32.Haque, M. R.; Bradbury, J. H. “Preparation of Linamarin from Cassava Leaves for Use in a Cassava Cyanide Kit” Food Chem. 2004, 85, 27-29.
33.Bradbury, J. H. “Development of Sensitive Picrate Method to Determine Total Cyanide and Acetone Cyanohydrin Contents of Gari from Cassava” Food Chem. 2009, 113, 1329-1333.
34.Bradbury, J. H.; ClIFF, J.; Denton, I. C. “Uptake of Wetting Method in Africa to Reduce Cyanide Poisoning and Konzo from Cassava” Food Chem. Toxicol. 2011, 49, 539-542.
35.Deng, L.; Chen, C.; Zhou, M.; Guo, S.; Wang, E.; Dong, S. “Integrated Self-Powered Microchip Biosensor for Endogenous Biological Cyanide” Anal. Chem. 2010, 82, 4283-4287.
36.Mannel-Croise, C.; Probst, B.; Zelder, F. “A Straightforward Method for the Colorimetric Detection of Endogenous Biological Cyanide” Anal. Chem. 2009, 81, 9493-9498.
37.Divya, K. P.; Sreejith, S.; Balakrishna, B.; Jayamurthy, P.; Anees, P.; Ajayaghosh, A. “A Zn2+ -Specific Fluorescent Molecular Probe for the Selective Detection of Endogenous Cyanide in Biorelevant Samples” Chem. Commun. 2010, 46, 6069-6071.
38.Lin, C. Y.; Yu, C. J.; Lin, Y. H.; Tseng, W. L. “Colorimetric Sensing of Silver(I) and Mercury(II) Ions Based on and Assembly of Tween 20-Stabilized Gold Nanoparticles” Anal. Chem. 2010, 82, 6830-6837.
39.Huang, C. C.; Tseng, W. L. “Role of Fluorosurfactant-Modified Gold Nanoparticles in Selective Detection of Homocysteine Thiolactione:Remover and Sensor” Anal. Chem. 2008, 80, 6345-6350.
40.Su, C. L.; Tseng, W. L. “Gold Nanoparticles as Assisted Matrix for Determining Neutral Small Carbohydrates through Laser Desorption/Ionization Time-of-Flight Mass Spectrometry” Anal. Chem. 2007, 79, 1626-1633.
41.Niidome, Y.; Nakamura, Y.; Honda, K.; Akiyama, Y.; Nishioka, K.; Kawasaki, H.; Nakashima, N. “Characterization of Silver Ions Adsorbed on Gold Nanorods:Surface Analysis by Using Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry” Chem. Commun. 2009, 1754-1756.
42.Wu, H. P.; Yu, C. J.; Lin, C. Y.; Lin, Y. H.; Tseng, W. L. “Gold Nanoparticles as Assisted Matrices for the Detection of Biomolecules in a High-Salt Solution through Laser Desorption/Ionization Mass Spectrometry” J. Am. Soc. Mass Spectrom. 2009, 20, 875-882.
43.Pratt, J. M. “Chemistry and Biochemistry of B12” Wiley, New York, 1999, Chapter 4.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top