跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/18 02:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡政穎
研究生(外文):Cheng-ying Tsai
論文名稱:中孔洞奈米金屬的合成
論文名稱(外文):Synthesis of ordered mesoporous metal nanostructures
指導教授:郭紹偉郭紹偉引用關係
指導教授(外文):Shiao-Wei Kuo
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:92
中文關鍵詞:金屬反結構初濕含浸法奈米金屬線/二氧化矽3D立體體心立方(BCC)奈米金屬網路/二氧化矽
外文關鍵詞:metal replicaincipient wetness impregnationmetal nanowires/silica3D body-centered cubic (BCC) metal network/silica
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
本研究合成共嵌段聚合物Poly(ethylene glycol)-b-Poly(ε-caprolactone) (PEO-b-PCL)當作軟模板,並使用揮發導致自組裝形成中孔洞二氧化矽及中孔洞酚醛,並將酚醛碳化後轉換成中孔洞碳材,然後透過初濕含浸法將金屬前驅物填入孔道內並在高溫氫氣還原後得到填入孔道內之3D立體體心立方(BCC)金屬網路/二氧化矽和奈米金屬線/二氧化矽,金屬/酚醛複合材料和金屬/碳材複合材料,再經過氫氟酸清洗掉二氧化矽部分後可得到金屬反結構。透過穿透式電子顯微鏡(TEM)和小角度X光散射(SAXS)鑑定後可看出在合成後仍保有原來規則形貌且結構完好,加上選區繞射圖譜(SAED)及X光繞射分析(XRD)鑑定鈀、銀於孔道填入情況並且還原成零價金屬,而孔洞分布和比表面積可由氮氣吸脫附儀看出孔洞前後變化,金屬填入情況。 我們期望所合成的奈米金屬材料在未來應用上有著極優越的發展如催化反應、氣體偵測、奈米光電裝置及醫藥檢測。
In this study, we synthesized amphiphilic block copolymer Poly(ethylene glycol)-b-Poly(ε-caprolactone) (PEO-b-PCL), and the mesoporous silica and phenolic were synthesized by using EISA (evaporation induced self-assembly) strategy. The mesoporous carbon also obtained after carbonization. After incorporating the precursors into the mesoporous channels through incipient wetness impregnation and further hydrogen reduction, 3D body-centered cubic (BCC) metal network/silica, metal nanowires/silica, metal/phenolic, and metal/carbon nanocomposites could be obtained. Moreover, metal replica was obtained through HF etching. Transmission electron microscope (TEM) and the small angle X-ray scattering (SAXS) patterns indicate that the parent ordered mesoporous structure was well-maintained during the synthesis process. The X-ray diffraction (XRD) and selected-area electron diffraction (SAED) demonstrate that Pd and Ag were reduced within the channels of mesoporous materials. The pore size distribution and BET surface area of mesoporous materials and metal/mesoporous materials composite were recorded by N2 isotherm adsorption-desorption experiment. In the future, we expect that the mesoporous metal and mesoporous nanocomposite with specific morphologies behave excellent performance in various applications, such as catalysis, gas sensors, nano electronic/optical devices and medical diagnosis.
摘要 i
Abstract ii
目錄 iii
表目錄 v
圖目錄 vi
第一章 前言 1
1-1中孔洞氧化矽與奈米金屬簡介 1
1-2研究動機 2
第二章 理論與文獻回顧 4
2-1 嵌段共聚物(Block copolymer) 4
2-2 氫鍵作用力(hydrogen bond interaction) 5
2-3揮發誘導自組裝(Evaporation induced self-assembly, EISA) 5
2-4 Novolac type酚醛樹酯及交聯劑六甲烯基四胺 8
2-5 中孔洞材料簡介 9
2-6 中孔洞奈米金屬介紹及應用 10
第三章 實驗方法及步驟 16
3-1金屬/中孔洞二氧化矽實驗內容 16
3-2使用藥品 17
3-3樣品製備 18
3-3-1合成Poly(ethylene glycol)-block-Poly(ε-caprolactone) 18
3-3-2合成中孔洞二氧化矽 18
3-3-3合成中孔洞酚醛樹脂並經由碳化形成中孔洞碳材 19
3-3-4金屬前驅物填入中孔洞材料孔道中 20
3-3-5中孔洞金屬通氫氣還原過程 20
3-3-6金屬/中孔洞二氧化矽經由氫氟酸洗掉形成金屬反結構 21
3-4儀器使用 21
3-4-1氫核磁共振分析儀(Nuclear Magnetic Resonance, NMR) 21
3-4-2傅立葉紅外線光譜儀(Fourier Transform Infrared Spectrometer, FT-IR) 22
3-4-3 比表面積分析儀(Specific Surface Area & Pore Size Distribution Analyzer, BET) 23
3-4-4小角度X光散射儀(Small Angle X-ray Scattering, SAXS) 23
3-4-5穿透式電子顯微鏡(Transmission Electron Microscope,TEM) 24
3-4-6高解析度X光繞射儀(high resolution X-ray diffractometer) 24
第四章 結果與討論 26
4-1嵌段共聚物PEO-b-PCL的鑑定 26
4-2中孔洞二氧化矽結構轉換 27
4-3中孔洞二氧化矽長柱結構 32
4-4中孔洞碳材長柱結構 34
4-5中孔洞二氧化矽BCC填金屬鈀和反結構金屬鈀 36
4-6中孔洞二氧化矽BCC填金屬銀 44
4-7中孔洞二氧化矽長柱填金屬銀 49
4-8中孔洞二氧化矽長柱填金屬鈀 53
4-9中孔洞碳材長柱填金屬銀 58
4-10中孔洞碳材長柱填金屬鈀 62
第五章 結論 66
第六章 參考文獻 67
附錄 70


1.Ciesla, U.; Schuth, F. Micropor. Mesopor. Mater. 1999, 27, 131.
2.Ying, Jackie Y.; Mehnert, Christian P.; Wong, Michael S. Angew.chem. 1999, 38, 58.
3.Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.
4.Deng, Y.; Yu, T.; Wan Y.; Shi, Y.; Meng, Y.; Gu, D.; Zhang, L.; Huang, Y.; Liu C.; Wu, X.; Zhao, D. J. Am. Chem. Soc. 2007, 129, 1690.
5.Soler-Illia, G. J. d. A. A.; Crepaldi, E. L.; Grosso, D.; Sanchez, C. “Block copolymer-templated mesoporous oxides”, Current Opinion in Colloid and Interface Science 2003, 8, 109.
6.Wang, Z.; Qu, S.; Zeng, X.; Zhang, C.; Shi, M.; Tan, F.; Wang, Z.; Liu, J.; Hou, Y.; Teng, F.; Feng, Z. Polymer 2007, 48, 3925.
7.Bradley, J. S.; Schmid, G.; Weinheim. Clusters and Colloids 1994.
8.Moser, W. R. “Advanced Catalysis and Nanostructured Materials”, Academic Press,San Diego 1996.
9.El-Sayed, M. A. Acc. Chem. Res. 2001, 34, 257.
10.Mafuné, F.; Kohno, J.-Y.; Takeda, Y.; Kondow, T.; Sawabe, H. J. Phys. Chem. B 2000, 104, 8333.
11.Hu, J.; Odom, T. W.; Lieber, C. M. Acc. Chem. Res. 1999, 32, 435.
12.Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K. Acc. Chem. Res. 2001, 34, 181.
13.Foss, C. A.; Hornyak, G. L.; Stockert, J. A.; Martin, C. R. J. Phys. Chem. 1992, 293, 7497.
14.Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Chem. Commun. 1994, 801-802.
15.Zach, M. P.; Ng, K. H.; Penner, R. M. Science 2000, 290, 2120.
16.Alivisatos, A. P. Science 1996, 271, 933.
17.Fukuoka, A.; Ichikawa, M. “Morphology Control of Materials and Nanoparticle. Advanced Materials Processing and Characterization”, Spring-Verlag, Heidelberg 2003.
18.Masten, M. W.; Bate, F. S. Macromolecules 1996, 29, 1091.
19.Semenov, A. N. Sov. Phys. JETP 1958, 61, 733.
20.Brinker, C. J.; Lu, Y. F.; Sellinger, A.; Fan, H. Y. Adv. Mater. 1999, 11, 579.
21.Raman, N.; Anderson, M.; Brinker, C. Chem. Mater. 1996, 8, 1682.
22.Soler-Illia, G. J. de A. A.; Crepaldi, E. L.; Grosso, D.; Sanchez, C. Cocis 2003, 8, 109.
23.Knop, A.; Pilato, L. A. Springer-Verlag, Berlin, 1985.
24.蔡麗娟 國立中央大學化學研究所碩士論文 2001年
25.Huo, Q. S.; Margolese, D. I.; Ciesla, U.; Feng, P. Y.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Sch¨uth, F.; Stucky, G. D. Nature 1994, 368, 317.
26.Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710.
27.Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T-W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834.
28.Kleitz, F.; Choi, S. H.; Ryoo, R. Chem. Commun.2003, 2136.
29.Mafuné, F.; Kohno, J.-Y.; Takeda, Y.; Kondow, T.; Sawabe, H. J. Phys. Chem. B 2000, 104, 8333.
30.Fan, H.; Yang, K.; Boye, D. M.; Sigmon, T.; Malloy, K. J.; Xu, H.; Lo’pez, G. P.; Brinker, C. J. Science 2004, 304, 567.
31.Han, Y. J.; Kim, J. M.; Stucky, G. D. Chem. Mater. 2000, 12, 2068.
32.Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo R. Nature 2001, 412, 169.
33.Shin, H. J.; Ryoo, R.; Liu, Z.; Terasaki, O. J. Am. Chem. Soc. 2001, 123, 1246.
34.Kleitz, F.; Choi, S. H.; Ryoo, R. Chem. Commun. 2003, 2136.
35.Araki, H.; Fukuoka, A.; Sakamoto, Y.; Inagaki, S.; Sugimoto, N.; Fukushima Y.; Ichikawa, M. J. Mol. Catal. A-Chem. 2003, 199, 95.
36.Kang, H.; Jun, Y. W.; Park, J.; Lee, K. B.; Cheon, J. Chem. Mater. 2000, 12, 3530.
37.Yang, C. M.; Sheu, H. S.; Chao, K. J. Adv. Funct. Mater. 2002, 12, 143.
38.Michael, T. Chem. Mater. 2008, 20, 961.
39.Li, L.; Shi, J.-L.; Yan, J.-N. Chem. Commun. 2004, 1990.
40.Jung, J. H.; Rim, J. A.; Lee, S. J.; Cho, S. J.; Kim, S. Y.; Kang, J. K.; Kim, Y. M.; Kim, Y. J. J. Phys. Chem. C 2007, 111, 2679.
41.Kang, H.; Jun, Y.-W.; Park, J.-I.; Lee, K.-B.; Cheon, J. Chem. Mater. 2000, 12, 3530.
42.Huang, X.; Dong, W.; Wang, G.; Yang, M.; Tan, L.; Feng, Y.; Zhang, X. J. Colloid Interface Sci. 2011, 359, 40.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top