跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/19 01:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林詠弦
研究生(外文):Yong-Shian Lin
論文名稱:雙曲線光纖微透鏡曲率半徑熔燒製程及提高耦光效率之研究
論文名稱(外文):A Study of Radii of Curvature by Fusing Process and Improvement of Coupling Efficiency in Hyperbola Fiber Microlens
指導教授:鄭木海
指導教授(外文):Wood-Hi Cheng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:86
中文關鍵詞:耦光效率熔燒控制偏心雙曲線曲率半徑
外文關鍵詞:hyperbolafusing processoffsetcoupling efficiencyradii of curvature
相關次數:
  • 被引用被引用:3
  • 點閱點閱:271
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本論文係980nm高功率幫浦雷射與單模雙曲線光纖微透鏡高耦合效率研製之研究。由於雙曲線光纖微透鏡其端面形狀相似於數學上的雙曲面,而雙曲面之長短軸的剖面圖為一個雙曲線,整體雙曲線光纖微透鏡形狀為橢圓錐形,本研究根據雙曲線的數學特性來進行雙曲線光纖的曲率半徑參數推導,而曲率半徑的定義為雙曲線頂點和模場直徑(MFD) = 4.2μm與雙曲線的交點,此三點所形成的特徵圓曲率即是我們所表示的曲率半徑。
藉由數學性質的推導計算,得到曲率半徑(R)是一個半貫軸長(a)和兩漸進線夾角(θ)的函數,也就表示著我們可以經由控制a和θ來控制R。因為θ在雙曲線光纖研磨完成之後即固定,而a則可以藉由設定熔燒參數的強度來調整增大量,所以本研究以熔燒參數來控制a進而達到控制R的目的。藉由各種熔燒參數來調整a的增大量,將R控制在理想的2.6-2.8μm,確實有效的提高了耦光效率。此方法讓低偏心(小於0.5μm)的光纖微透鏡超過80%,而偏心較大(0.6-0.8μm)的光纖也能經由此方法來達到70%甚至80%。
本光纖微透鏡之製程優點為研磨步驟簡化為一次研磨與一次熔燒,研磨時間大量減少並控制光纖微透鏡中心與光纖中心之偏心量至0.5μm上下。此外,在熔燒成型透鏡過程中,僅需以微熔燒方式進行拋光,可省去尖點去除的步驟,因此高耦光效率光纖微透鏡製程之重複性及良率提高,耦光效率超過80%的達到64%,超過70%的則達到98%,可大幅降低研磨成本。
This study is to improve the coupling efficiency between 980nm high-power pump laser diode and single-mode fiber. In this study, we use the third generation of fiber grinding machine which is designed by Cheng Shiu University, professor Ying-Chien Tsai. This machine is fully automatic. we use it to fabricate the hyperbola microlenses.
The advantages about hyperbola microlenses structure are a single-step fabrication, grinding steps to simplify, reduce the grinding time and will greatly reduce the offset of fiber. In the fusing procedure, the slight arc fusion was mainly applied for fine polishing merely instead of reshaping for the reason that the fabricated hyperbola fiber endface was very close to the ideal shape. The fabrication reproducibility and yield increase, and can reduce the cost of grinding.
The fiber end shape is similar to the math on the hyperboloid, and the length of the axis of the hyperboloid profile shows a hyperbola. By mathematical properties of hyperbola, we derivation the parameter of radius of curvature for hyperbola microlenses. The definition of the radius of curvature of the hyperbolic vertex and the mode field diameter (the MFD) = 4.2μm point of intersection with the hyperbola, the characteristics of the formation of this three o''clock round the curvature is the radius of curvature we have said.
The radius of curvature (R) is a semi-consistent axial length (a) and two progressive line angle (θ) function, it means we can through the control of “a” and θ to control the R, but θ is fixed after grinding process. So we choose control parameter “a” by fusing process, via control “a” to achieve the purpose of the control R.
By various fusing parameters to adjust the gain of “a”, we can control the R in an ideal 2.6-2.8μm. This process indeed improves the coupling efficiency. This method gives a low offset of the fiber it easier for more than 80%. And larger offset of the fiber by this method can achieve to 70% even 80%.
誌謝 III
中文摘要 IV
Abstract V
目錄 VII
圖目錄 IX
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 3
1.4 論文架構 8
1.5 參考文獻 8
第二章 理論分析 11
2.1 雷射簡介 11
2.2 高斯光束與模態耦合理論 13
2.2.1 高斯光束 13
2.2.2 模態匹配 14
2.3 雙曲線光纖微透鏡 17
2.3.1 雙曲線光纖微透鏡曲率之設計 17
2.3.2 雙曲線光纖微透鏡研製方式原理 21
2.4 參考文獻 24
第三章 雙曲線光纖微透鏡之製作及量測 26
3.1 雙曲線光纖微透鏡研磨系統 26
3.2 雙曲線光纖微透鏡之製程 27
3.2.1 光纖特性簡介 28
3.2.2 雙曲線光纖微透鏡端面之成型 28
3.2.3 雙曲線光纖微透鏡之製作步驟 32
3.3 雙曲線光纖微透鏡之量測 38
3.3.1 雙曲線光纖微透鏡之偏心量測 38
3.3.2 雙曲線光纖微透鏡之曲率半徑量測 43
3.3.3 雙曲線光纖微透鏡之耦光效率量測 47
3.4 參考文獻 50
第四章 雙曲線光纖微透鏡曲率半徑與熔燒之關係 51
4.1 雙曲線光纖微透鏡曲率半徑之參數推導 51
4.2 各種熔燒參數與半貫軸長和曲率半徑之關係 53
4.3 雙曲線光纖使用熔燒控制曲率半徑之成效 58
第五章 結論與未來工作 71
5.1 結論 71
5.2 未來工作 72
1.S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann, and R. I. Laming, “Fabrication and Characterization of Low-Loss Optical Fibers Containing Rare-Earth Ions,” Journal of Lightwave Technology, Vol.LT-4, pp. 870-876, 1986.
2.E. Desurvire, J. R. Simpson, and P. C. Becker, “High-Gain Erbium-Doped Traveling-Wave Fiber Amplifier,” Optics Letters, Vol.12, pp. 888-890, 1987.
3.W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” Journal of Lightwave Technology, Vol.9, pp.234-250, 1991.
4.M. Yamada, M. Shimizu, T. Takeshita, M. Okayasu, M. Horiguchi, S. Uehara, and E. Sugita, “Er3+-Doped Fiber Amplifier Pumped by 0.98μm Laser Diodes, “IEEE Photonics Technology Letters, Vol.1, pp.422-424, 1989.
5.M. Yamada, M. Shimizu, M. Okayasu, T. Takeshita, M. Horiguchi, S. Uehara, Y. Tachikawa, and E. Sugita, “Noise Characteristics of Er3+-Doped Fiber Amplifiers Pumped by 0.98 and 1.48μm Laser Diodes,” IEEE Photonics Technology Letters, Vol.2, pp.205-207, 1990.
6.R. E. Smith, C. T. Sullivan, G. A. Vawter, G. R. Hadley, J. R. Wendt, M. B. Snipes, and J. F. Klem, “Reduced Coupling Loss Using a Tapered-Rib Adiabatic-Following Fiber Coupler,” IEEE Photonics Technology Letters, Vol.8, pp.1052-1054, 1996.
7.Y. Fu, N. K. A. Bryan, and O. N. Shing “Integrated Micro-Cylindrical Lens with Laser Diode for Single-Mode Fiber Coupling,” IEEE Photonics Technology Letters, Vol.12, pp.1213-1215, 2000.
8.J. C. Livas, S. R. Chinn, E. S. Kintzer, J. N. Walpole, C. A. Wang, and L. J. Missaggia, “High-Power Erbium-Doped Fibre Amplifier with 975nm Tapered-Gain-Region Laser Pumps,” Electronics Letters, Vol.30, pp.1054-1055, 1994.
9.S. Y. Huang, C. E. Gaebe, K. A. Miller, G. T. Wiand, and T. S. Stakelon, “High Coupling Optical Design for Laser Diodes with Large Aspect Ratio,” IEEE Transactions on Advanced Packaging, Vol.23, pp.165-169, 2000.
10.S. M. Yeh, Y. K. Lu, S. Y. Huang, H. H. Lin, C. H. Hsieh, and W. H. Cheng, “A Novel Scheme of Lensed Fiber Employing a Quadrangular-Pyramid-Shaped Fiber Endface for Coupling Between High-Power Laser Diodes and Single-Mode Fibers,” Journal of Lightwave Technology, Vol.22, pp. 1374-1379, 2004.
11.S. M. Yeh, S. Y. Huang, and W. H. Cheng, “A New Scheme of Conical-Wedge-Shaped Fiber Endface for Coupling Between High-Power Laser Diodes and Single-Mode Fibers,” Journal of Lightwave Technology, Vol.23, pp. 1781-1786, 2005.
12.Y. K. Lu, Y. C. Tsai, Y. D. Liu, S. M. Yeh, C. C. Lin, and W. H. Cheng, “Asymmetric elliptic-cone-shaped microlens for efficient coupling to high-power laser diodes,” Optics Express, Vol. 15, pp.1434-1442, 2007.
13.葉斯銘,“橢圓光纖微透鏡之研究,”國立中山大學光電工程研究所,博士論文國立中山大學光電工程研究所, 2006.
14.Yu-Da Liu, Ying-Chien Tsai, Yu-Kuan Lu , Li-Jin Wang, Ming-Chun Hsieh, Szu-Ming Yeh, and Wood-Hi Cheng, “New Scheme of Double-Variable-Curvature Microlens for Efficient Coupling High-Power Lasers to Single-Mode Fibers” Journal of Lightwave Technology, Vol.29, pp. 898-904, 2011.
1.科學月刊1981年9月141期 “雷射原理簡介” 作者:盛天予
2.林啟中, “非軸對稱橢圓錐光纖透鏡之研製與特性,” 碩士論文, 國立中山大學光電工程研究所, 2007.
3.葉斯銘, “橢圓光纖微透鏡之研究,” 博士論文, 國立中山大學光電工程研究所, 2006.
4.呂昱寬, “波前量測應用於雷射與光纖耦合之研究,” 博士論文, 國立中山大學光電工程研究所, 2008.
5.B. E. A. Saleh, M. C. Teich, “Fundamentals of Photonics,” John Wiley & Sons, pp. 83, 1991.
6.V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Young, “Efficient power coupling from a 980-nm, broad-area laser to a single-mode fiber using a wedge-shaped fiber endface,” Journal of Lightwave Technology, vol.8, pp. 1313-1318, 1990.
7.C. A. Edwards, H. M. Presby, C. Dragone, “Ideal microlenses for laser to fiber coupling,” Journal of Lightwave Technology, Vol. 11, pp. 252 -257, 1993.
8.劉育達, “雙變曲率光纖微透鏡之研究,” 博士論文, 國立中山大學光電工程研究所, 2011.
9.Y. D. Liu, Y. C. Tsai, L. J. Wang, Y. K. Lu, M. C. Hsieh, S. M. Yeh, and W. H. Cheng, “New scheme of double-variable-curvature microlens for efficient coupling high-power lasers to single-mode fibers,” Journal of Lightwave Technology, Vol. 29, pp898-904, 2011.
10.F. W. Preston, “The theory and design of plate glass polishing machines,” Journal of the Society of Glass Technology, Vol. 11, pp. 214-256, 1927.
11.劉育達, “非對稱型光纖端面研磨機構設計之研究,” 碩士論文, 中山大學機械與機電工程學系, 2006.
12.Y. K. Lu, Y. C. Tsai, Y. D. Liu, S. M. Yeh, C. C. Lin, and W. H. Cheng, “Asymmetric elliptic-cone-shaped microlens for efficient coupling to high-power laser diodes,” Optics Express, Vol. 15, pp.1434-1442, 2007.
13.S. Teich, Fundamentals of Photonics, Canada, Wiley Interscience, Ch. 1-2, 1991.
1.謝銘駿, “雙變曲率光纖端面研磨機構設計與製造之研究,” 碩士論文, 國立中山大學機械與機電工程學系, 2008.
2.Axcel Photonics Data Sheets, 45 Bartlett St., Marborough, MA 01752, 2009.
3.Y. D. Liu, Y. C. Tsai, L. J. Wang, Y. K. Lu, M. C. Hsieh, S. M. Yeh, and W. H. Cheng, “New scheme of double-variable-curvature microlens for efficient coupling high-power lasers to single-mode fibers,” Journal of Lightwave Technology, Vol. 29, pp898-904, 2011.
4.劉育達, “雙變曲率光纖微透鏡之研究,” 博士論文, 國立中山大學光電工程研究所, 2011.
5.http://mathworld.wolfram.com/Hyperboloid.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top