跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/19 00:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:白景堯
研究生(外文):Ching-Yao Pai
論文名稱:使用寬能隙材料磷化鎵薄膜於矽基太陽能電池之研究與探討
論文名稱(外文):An Investigation of the Wide-Bandgap GaP Material used for Silicon-Based Solar Cells
指導教授:林吉聰
指導教授(外文):Jyi-Tsong Lin
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:70
中文關鍵詞:能帶彎曲非晶矽異質接面磷化鎵高開路電壓
外文關鍵詞:Bandgap bendinga-Si:HHeterojunctionGaPHigh open-circuit voltage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:265
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文提出新架構磷化鎵/非晶矽/矽太陽能電池(GaP/a-Si:H/BulkSi solar
cell),利用能隙概念使得傳統磷化鎵/矽太陽能電池的開路電壓獲得改善。當磷化
鎵濃度提升時,會使能帶向下彎曲,使得載子容易被收集,提升短路電流密度。
且將非晶矽濃度上升時,能帶會向上彎曲,使得位能增加,進而提升開路電壓;
但是因為位能的增加,會使得載子傳輸受阻,使得短路電流密度大幅下降。因此,
將分別探討磷化鎵/非晶矽/矽之太陽能電池在高短路電流時與高開路電壓兩種情
況的特性。值得注意的是新電池的開路電壓在架構參數的最佳化之後可高達 0.758
V 以上,與傳統平面太陽能電池相比開路電壓增進 27.18 %。
此外,傳統磷化鎵/矽太陽能(GaP/BulkSi solar cell)電池中,還有許多細節
尚未被探討。因此本篇論文深入探討傳統使用寬能隙材料磷化鎵(Gallium
Phosphide, GaP)薄膜在矽晶圓上之太陽能電池(GaP/BulkSi solar cell)特性。由
於磷化鎵薄膜在短波 450 nm 以下的吸收率較好以及磷化鎵在矽基板上之反射率較
低的情況下,分別改善內部量子效率(Internal Quantum Efficiency, IQE)與外部量
子效率(External Quantum Efficiency, EQE),使得光子在太陽能電池內部更有效地
的被吸收而產生電子電洞對被收集,在與傳統平面矽基太陽能電池(PN_BulkSi
solar cell)相比可將短路電流密度提升 10 %。此磷化鎵在矽晶圓之太陽能電池最
佳化後可得:短路電流(Short-Circuit Current, J sc )達 21.864 mA/cm
2 ,開路電壓
(Open-Circuit Voltage, Voc)為0.624 V,填充因子(Fill Factor, FF)在82.4 %,轉
換效率為11.236 %。
In this thesis, we propose a new structure of GaP/a-Si:H/BulkSi solar cell in which
the additional a-Si:H layer due to the concept of energy bandgap is used to improve the
open-circuit voltage. As the a-Si:H doping concentration is increased, the upward
bandgap bending is expected to be observed; hence, a high open-circuit voltage is
obtained. But in this situation, the upward bandgap bending also hinders the carrier
transport, leading a low short-circuit current density. It is worth noting that the proposed
solar cell can have a high open-circuit voltage of 0.758 V.
In addition, we carefully investigate the characteristics of wide-bandgap gallium
phosphide (GaP) material used for silicon-based solar cells. According to the simulated
results, the absorption of GaP is better than silicon with a wavelength below 450 nm.
Also, the GaP/BulkSi solar cell is shown to have a lower reflectivity value than the
conventional PN_BulkSi solar cell. Hence we can prove that the internal quantum
efficiency and external quantum efficiency are improved accordingly. As a result, the
short-circuit current density is increased about 10 %. In addition, the optimized
parameters of a GaP/BulkSi solar cell are as follows: the short-circuit current density is
21.264 mA/cm2, the open-circuit voltage is 0.624 V, the fill factor is 82.4 %, the
conversion efficiency is 11.236 %, respectively.
第一章 簡介 .............................................................................................................. 1
1.1 背景 ................................................................................................................... 1
1.2 太陽能電池種類與發展 ................................................................................... 2
1.3 文獻回顧 ........................................................................................................... 3
1.4 研究動機 ......................................................................................................... 12
第二章 太陽能電池理論與物理機制 .................................................................... 14
2.1 光電效應 ......................................................................................................... 14
2.2 光伏特效應 ..................................................................................................... 15
2.3 太陽能電池基本理論 ..................................................................................... 15
2.3.1 太陽輻射光譜 ...................................................................................... 15
2.3.2 太陽能電池產生電力之原理 .............................................................. 17
2.3.3 太陽能電池主要損失與重要參數 ...................................................... 20
2.4 復合機制 ......................................................................................................... 22
第三章 太陽能電池架構設計與製程 .................................................................... 25
3.1 傳統平面太陽能電池製程步驟 ..................................................................... 25
3.2 磷化鎵/矽太陽能電池製程步驟 .................................................................... 26
3.3 磷化鎵/非晶矽/矽太陽能電池製程步驟 ....................................................... 27
第四章 模擬結果與討論 ........................................................................................ 28
4.1 元件製程模擬之物理模型 ............................................................................. 28
4.2 元件製程模擬結果探討 ................................................................................. 30
4.2.1 傳統平面太陽能電池(PN_BulkSi solar cell) ................................ 30
4.2.2 磷化鎵/矽太陽能電池(GaP/Bulk Si solar cell) ............................. 34
4.2.3 磷化鎵/矽與傳統平面太陽能電池比較 ............................................. 39
4.2.4 磷化鎵/非晶矽/矽太陽能電池(GaP/a-Si:H/BulkSi solar cell) ...... 42
4.3 傳統平面太陽能電池、傳統磷化鎵/矽太陽能電池與新磷化鎵/非晶矽/矽太
陽能電池之比較 .................................................................................................... 54
第五章 總結 ............................................................................................................ 56
5.1 結論 ................................................................................................................. 56
5.2 未來展望 ......................................................................................................... 56
參考文獻 .................................................................................................................... 57
[1] B. Dudley, “Statistical review of world energy”, 2011.
[2] 翁敏航,太陽能電池,東華書局,2006。
[3] S. Kurtz, “Opportunities and challenges for development of a mature
concentrating photovoltaic power industry”, NREL , 2009.
[4] C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap
terrestrial solar cells”, J. Appl. Phys, vol. 51, pp. 4494-4500, 1980.
[5] P. T. Landsberg, G. Tonge, “Thermodynamic energy conversion efficiencies”, J.
Appl. Phys, vol. 51, pp. R1-R20, 1980.
[6] D. K. Schroder, “Carrier lifetimes in silicon”, IEEE Trans. Electron Devices, vol.
44, pp. 160-170, 1997.
[7] A. G. Aberle, “Surface passivation of crystalline silicon solar cells: A Review”,
Prog. Photovoltaics Res. Appl., vol. 8, pp. 473-487, 2000.
[8] S.R. Wenham, “Buried contact silicon solar cells”, Sol. Energ. Mater. Sol. Cells,
vol. 34, pp. 101-110, 1994.
[9] J. Zhao, “24.5% efficiency silicon PERT cells on MCZ substrates and 24.7%
efficiency PERL Cells on FZ Substrates”, Prog. Photovoltaics Res. Appl., vol. 7,
pp. 471-474, 1999.
[10] J. Zhao, “Recent advances of high-efficiency single crystalline silicon solar cells
in processing technologies and substrate materials”, Sol. Energ. Mater. Sol. Cells,
vol. 82, pp.53-64, 2004.
[11] F. A. Lindholm, J. A. Mazer, “Degradation of solar cell performance by areal
inhomogeneity”, Solid State Electron, vol. 23, pp. 967-971, 1980.
[12] M. B. Spitzer, “Very high-efficiency thin silicon p-n junction solar cells using
reflective surface”, conf. Rec. IEEE Photovoltaic Spec. Conf., pp. 375-380,
1980.
[13] B. E. Sagol, “Lifetime and performance of InGaAsP and InGaAs absorbers for
low bandgap tandem solar cells”, conf. Rec. IEEE Photovoltaic Spec. Conf., pp.
1090-1093, 2009.
[14] Y. C. Kao, “Electron and hole carrier mobilities for liquid phase epitaxially
grown GaP in the temperature range 200–550 K”, J. Appl. Phys., vol. 54, pp.
2468-2471, 1983.
[15] G. Zeidenbergs, “Si-GaP heterojunctions”, Solid State Electron, vol. 10, pp.
113-123, 1967.
[16] T. Katoda, “Heteroepitaxial grown of gallium phosphide on silicon”, J. Electron
Mater., vol. 9, pp. 783-796, 1980.
[17] S. R. Huang, “Window layer properties of GaP films grown on Si by liquid
phase epitaxy”, conf. Rec. IEEE Photovoltaic Spec. Conf., pp. 1-4, 2008.
[18] G. A. Landis, “Wide-bandgap epitaxial heterojunction windows for silicon solar
cells”, IEEE Trans. Electron Devices, vol. 37, pp. 372-381, 1990.
[19] J. F. Geisz, “40.8% efficient inverted triple-junction solar cell with two
independentlymetamorphic junctions”, Appl. Phys. Lett., vol. 93, pp.
123505-123505-3, 2008.
[20] W. Guter, “Current-matched triple-junction solar cell reaching 41.1% conversion
efficiency under concentrated sunlight”, Appl. Phys. Lett., vol. 94, pp.
223504-223504-3, 2009.
[21] A. Barnett, “Very High Efficiency Solar Cell Modules”, Prog. Photovoltaics Res.
Appl., vol. 17, pp. 75-83, 2009.
[22] J. L. Gray, “Efficiency of multijunction photovoltaic systems”, conf. Rec. IEEE
Photovoltaic Spec. Conf., pp. 1-6, 2008.
[23] S. R. Huang, “GaP films grown on Si by liquid phase epitaxy”, conf. Rec. IEEE
Photovoltaic Spec. Conf., pp. 241-243, 2009.
[24] S. R. Huang, “Gallium phosphide epitaxial films for silicon-based multi-junction
solar cells grown by liquid phase epitaxy”, conf. Rec. IEEE Photovoltaic Spec.
Conf., pp. 3343-3346, 2010.
[25] X. Lu, “Gallium phosphide solar cells for multi-juntion systems”, conf. Rec.
IEEE Photovoltaic Spec. Conf., pp. 968-971, 2009.
[26] A. C. Tamboli, “Conformal GaP layers on Si wire arrays for solar energy
applications”, Appl. Phys. Lett., vol. 97, pp. 221914-221914-3, 2010.
[27] A. C. Tamboli, “GaP/Si wire array solar cells”, conf. Rec. IEEE Photovoltaic
Spec. Conf., pp. 918-922, 2010.
[28] T. J. Grassman, “Control and elimination of nucleation-related defects in
GaP/Si(001) heteroepitaxy”, Appl. Phys. Lett., vol. 94, pp. 232106-232106-3,
2009.
[29] H. D‥oscher, “Indirect in situ characterization of Si(100) substrates at the initial
stage of III–V heteroepitaxy”, J. Cryst. Growth, vol. 315, pp. 16-21, 2009.
[30] S. Y. Lien, “Deposition and Characterization of High-Efficiency Silicon
Thin-Film Solar Cell by HF-CVD and OES Technology”, IEEE Trans. Electron
Devices, vol. 59, pp. 1245-1254, 2012.
[31] V. E. Ferry, “Improved red-response in thin-film a-Si:H solar cells with
soft-imprinted plasmonic back reflectors”, Appl. Phys. Lett., vol. 95, pp.
183503-183503-3, 2009.
[32] 蔡進譯,超高效率太陽能電池-從愛因斯坦的光電效應談起,物理雙月刊,
27 卷 5 期,2005。
[33] PVEDUCATION.ORG, http://pveducation.org/
[34] Silvaco, Atlas User’s Manual, 2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊