跳到主要內容

臺灣博碩士論文加值系統

(100.28.132.102) 您好!臺灣時間:2024/06/13 22:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊世銘
研究生(外文):Yang, Shih-Ming
論文名稱:大學生對基改食品及異種生物器官移植之認知結構與非制式推理思考
論文名稱(外文):University Students’ Cognitive Structures And Informal Reasoning Regarding Two Genetic Engineering Issues
指導教授:吳穎沺吳穎沺引用關係
指導教授(外文):Wu, Ying-Tien
口試委員:黃鴻博溫媺純
口試委員(外文):Huang, Hon-boMeichun Lydia Wen
口試日期:2011-10-28
學位類別:碩士
校院名稱:國立臺中教育大學
系所名稱:科學應用與推廣學系科學教育碩士班
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:中文
論文頁數:188
中文關鍵詞:認知結構非制式推理思考社會性科學議題異種生物器官移植基改食品
外文關鍵詞:cognitive structureinformal reasoningsocio-scientific issuexenotransplantationgenetically modified foods (GMFs)
相關次數:
  • 被引用被引用:2
  • 點閱點閱:363
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討大學生在同時面對兩個與基因工程相關的社會性科學議題:「異種生物器官移植」議題及「基改食品」議題在認知結構上與非制式推理思考是否有所差異,進一步並希望探究其認知結構及非制式推理思考之間的關係。本研究之研究對象為45位非理工科系的大學生,分別針對兩個議題進行三小時的介紹課程後,分兩階段進行資料蒐集。第一階段是藉由錄音訪談後以「語意流程圖析法」(flow map method)來收集研究資料,第二階段則請受試者填寫一份開放式問卷(Openended questionnaire)再分析問卷內容來獲得資料。
研究結果顯示,在認知結構方面學生在兩個議題的概念廣度並沒有顯著的差異,但是在概念複雜度及高階的訊息處理策略則為「 基改食品」議 題顯著優於「 異種生物器官移植」議題。在非制式推理思考方面,學生在面對「異種生物器官移植」議題時能展現較佳的非致式推理能力也能運用較多元的推理模式來探討議題。比較學生對於兩個議題的認知概念可發現在學生在「基改食品」議題的認知概念中有較多相同的概念,對於「異種生物器官移植」議題的概念就比較分歧。此外,我們發現學生較能有效將基改食品課程中提及的概念轉化為自己的認知概念,並能將其運用到非制式推理之上,可見不同的SSI議題對於學生認知概念建立與應用是有所差異的。最後,本研究基於研究之結果,對社會性科學議題融入教學之教學實務及未來研究提出相關建議。
This study attempted to compare the university students’ cognitive structures and their informal reasoning regarding two related genetically socioscientific issues, one is the “xenotransplantation” and the other is “genetically modified foods (GMFs)”. The participants were 45 nonscience major university students in Taichung city. Before the conduct of this study, the participants had already taken three hours learning activities regarding two issues. We collect out data by two steps, step one: To probe learners’ cognitive structures about SSIs, students’ narratives were obtained through taperecorded interviews, and then been transcribed into the format of “flow map”. Step 2: The participants’ informal reasoning was assessed with an openended questionnaire. And then, their responses were analyzed both qualitatively and quantitatively.
Research findings revealed that there is no significant difference was found on the “extent” of their cognitive structures of two issues. But the students’ concept of “GMFs” in the “richness” is superior to “xenotransplantation”. Furthermore, the high level information processing strategies obviously is better than “xenotransplantation”. We also found that students were able to construct more rebuttals and use different kinds of reasoning modes when they regarding the “xenotransplantation” issue. Compared with their cognitive structures regarding “xenotransplantation”, more common ideas were showed within the students’ cognitive structures regarding GMFs. Moreover, we found that the students might
transform the ideals of GMFs in learning activities to their own concepts more effectively, and used them well in informal reasoning. It revealed that different SSI issues might affect the application of students’ concepts in their informal reasoning. Finally, implications for teaching practices and directions for further research are also discussed.
中文摘要............................. I
英文摘要............................. II
目次............................... III
表次............................... VI
圖次............................... VII
第一章 緒論........................... 1
第一節 研究背景與動機...................... 1
第二節 研究目的與研究問題.................... 4
第三節 名詞解釋......................... 6
第四節 研究範圍與限制...................... 8
第二章 文獻探討......................... 9
第一節 社會性科學議題與基因工程議題發展............. 9
壹、社會性科學議題與其特性................... 9
貳、基因工程議題的發展..................... 11
第二節 認知結構與非制式推理思考................ 16
壹、概念理解與認知結構分析................... 16
貳、非制式推理思考....................... 20
参、非制式推理模式與社會性科學議題之相關研究.......... 21
第三章 研究方法........................ 25
第一節 研究對象........................ 25
第二節 研究設計........................ 26
第三節 研究流程........................ 30
第四節 研究工具 ........................ 32
第五節 認知概念、課程概念與非制式推理論點分析......... 34
壹、認知結構分析........................ 34
貳、非制式推理思考....................... 45
参、認知概念、課程概念與非制式推理論點分析........... 48
第四章 研究結果與討論..................... 50
第一節 學生對於兩個與基因工程相關的社會性科學議題之認知結構分析 51
壹、認知結構之分析比較..................... 51
貳、訊息處理策略分析...................... 55
第二節 學生在面對兩個社會性科學議題之非制式推理思考分析.... 57
壹、學生面對兩個不同議題之立場分析............... 57
貳、非制式推理思考能力分析................... 60
参、面對兩個不同議題之非制式推理模式分析............ 63
第三節 兩大議題之認知結構概念與課程概念及非制式推理思考能力論點
相關分析............................ 71
壹、學生認知概念內容分析.................... 71
貳、認知結構之概念運用課程概念之分析.............. 76
参、學生應用在認知結構中的概念於非制式推理思考情形....... 80
第五章 結論與建議....................... 84
第一節 結論.......................... 84
壹、大學生面對不同議題認知結構的比較.............. 84
貳、大學生面對不同議題非制式推理思考的比較........... 85
参、認知概念與課程概念及非制式推理思考使用的論點之關係..... 85
第二節 建議.......................... 86
壹、實務教學建議........................ 86
貳、未來研究建議........................ 87
參考文獻............................ 88
附錄.............................. 96
附錄 A 基因工程議題非制式思考推理問卷異種生物器官移植議題... 96
附錄B 基因工程議題非制式思考推理問卷基改食品議題........ 97
附錄C 訪談人員訪談標準流程................... 98
附錄D 大學生面對兩個社會性科學議題之語意流程圖......... 99
中文部分:
衛生署(2011)。基因改造食品之管理(書面報告)。食品藥物消費者知識服務網。2011 年2月22 日。取自http://consumer.fda.gov.tw/Pages/List.aspx?nodeID=82
林宗進、林樹聲和陳映均(2010)。大學生對基改作物的認知與論證。科學教育學刊,18(3),229-252。
林樹聲(2006)。從爭議性科技議題的教學設計和實踐中詮釋科學教師的角色─個案研究。科學教育學刊,14(3),237-255。
林樹聲(2007)。國小資深科學教師的專業改變:以基因改造食品議題之教學為例。科學教育學刊,15,241-264。
杜清富、戴浩志、楊天樹、李章銘、曾堯麟、周迺寬、楊卿堯、莊景凱、翁仲男、李伯皇(2009)。基因改造在異種移植之應用。台灣醫學,13(3),298-308。
吳穎沺(2003)。建構式主義的科學學習活動對國小高年級學生認知結構知影響。國立交通大學教育研究所碩士論文,未出版,新竹市。
吳穎沺(2007)。高中生對於核能發電爭議之非制式推理思考-兼探網路探究活動之影響。國立台灣師範大學地球科學研究所博士論文,未出版,台北市。
周柏成(2010)。國中生物倫理之研究-以基因改造食品為例。國立台灣師範大學生命科學系教學碩士論文,未出版,台北市。
周桂田(2002)。生物科技的全球化與在地社會風險。科學發展,354,32-39。
陳志龍(2008)。器官複製之風險評估與濫用禁止之刑事政策研究成果報告,行政院國家科學委員會專題研究計畫成果報告(編號:NSC95-2414-H-002-020),未出版。
郭玉梅(2006)。基因作物的衝擊。科學發展,401,54-59。
莊孟蓉(2009)。基因改造科技之研發問題探討。生活科技教育月刊,42(4),93-101。
劉湘瑤、李麗菁、蔡今中(2007)。科學認識觀與社會性科學議題抉擇判斷之相關性探討。科學教育學刊,15(3),335-365。
鄭榮輝、林陳涌(2002)。職前教師對生物倫理教育之意見調查。科學教育學刊,10(3),211-232。
釋昭慧(2005)。異種基因轉殖的倫理爭議及佛法觀點。玄奘佛學研究,3,1-30。
蘇遠志(2001)。基因改造食品。科學發展月刊,29(8),579-585。

英文部分:
Albe, V. (2008). When scientific knowledge, daily life experience, epistemological and social considerations intersect: Students’ argumentation in group discussions on a socio-scientific issue. Research in Science Education, 38, 67–90.
American Association for the Advancement of Science (1990). Science for all americans. New York: Oxford University Press.
American Association for the Advancement of Science (1993). Benchmarks for science literacy. New York: Oxford University Press.
Barab, S. A., Sadler, T. D., Heiselt, C., Hickey, D. T., & Zuiker, S. (2007). Relating narrative,inquiry and inscriptions: Supporting consequential play. Journal of Science Education and Technology, 16, 59–82.
Bryce, T., & Gray, D. (2004). Tough acts to follow: the challenges to science teachers presented by biotechnological progress. International Journal of Science Education, 26, 717-733.
Cross, R. T. (1993). The risk of risks: A challenge and a dilemma for science and technology education. Research in Science and Technological Education, 11(2), 171-183.
Dawson, V., & Schibeci, R. (2003). Western australian school students' understanding of biotechnology. International Journal of Science Education, 25, 57-69.
Dawson, V., & Venville G. J. (2009). High-school students’ informal reasoning and argumentation about biotechnology: An indicator of scientific literacy? International Journal of Science Education, 31(11), 1421-1445
Dillon, J. (2009). On scientific literacy and curriculum reform. International Journal of Environmental and Science Education, 4, 201–213.
Ekborg, M. (2008). Opinion building on a socio-scientific issue. The case of genetically modified plants. Journal of Biological Education, 42(2), 60-65.
Fowler, S. R., Zeidler, D. L., & Sadler, T. D. (2009). Moral sensitivity in the context of socio-scientific issues in high school science students. International Journal of Science Education, 31(2). 279-296.
Halverson, K. L., Siegel, M. A., & Freyermuth, S. K. (2009). Lenses for framing decisions: Undergraduates' decision making about stem cell research International Journal of Science Education, 31, 1249-1268.
Ibáñez-Orcajoa, M. T., & Martínez-Aznar M. M. (2007). Solving problems in genetics, Part III: Change in the view of the nature of science. International Journal of Science Education, 29, 747–769.
Jimenez-Aleixandre, M. P., Rodriguez, A. B., & Duschl, R. A. (2000). “Doing the lesson” or “doing science”: Argument in high school genetics. Science Education, 84, 757–792.
Kibuka-Sebitosi, E. (2007). Understanding genetics and inheritance in rural schools. Journal of Biological Education,41(2), 56-61.
Kolstø, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socio-scientific issues. Science Education, 85, 291-310.
Kolstø, S. D. (2006). Patterns in students’ argumentation confronted with a risk-focused socio-scientific issue. International Journal of Science Education, 28(14), 1689–1716.
Lee, M. (2007). Developing decision-making skills for socio-scientific issues. Journal of Biological Education, 41(4), 170–177.
Levinson, R. (2006). Towards a theoretical framework for teaching controversial socio-scientific issues. International Journal of Science Education, 28, 1201-1224.
Lewis, J., Leach, J., & Wood-Robinson, C. (2000). All in the genes?-young people's understanding of the nature of genes. Journal of Biological Education, 34, 74-79.
Millar, R. (1997). Science education for democracy: What can the school curriculum achieve? In R Levinson and J. Thomas (Eds.), Science Today — Problem or crisis? New York: Routledge, 87-101.
Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994–1020.
Oulton, C., Dillon, J., & Grace, M. M. (2004). Reconceptualizing the teaching of controversial issues. International Journal of Science Education, 26, 411-423.
Sadler, T. D. (2004). Informal reasoning regarding socio-scientific issues: A critical review of research. Journal of Research in Science Teaching, 41, 513-536.
Sadler, T. D., & Fowler S. R. (2006). A threshold model of content knowledge transfer for socio-scientific argumentationt. Science Education, 90(6), 986-104.
Sadler, T. D., & Zeidler, D. L. (2004). The significance of content knowledge for informal reasoning regarding socio-scientific issues: Applying genetics knowledge to genetic engineering issues. Science Education, 89, 71-93.
Sadler, T. D., & Zeidler, D. L. (2005). Patterns of informal reasoning in the context of socio-scientific decision making. Journal of Research in Science Teaching, 42, 112-138.
Sadler, T. D., Chambers, F. W., & Zeidler, D. L. (2004). Student conceptualizations of the nature of science in response to a socio-scientific issue. International Journal of Science Education , 26(4), 387-409.
Seethaler, S., & Linn, M. (2004). Genetically modified food in perspective: an inquiry-based curriculum to help middle school students make sense of tradeoffs. International Journal of Science Education, 26, 1765-1785.
Simonneaux, L. (2001). Role-play or debate to promote students’ argumentation and justification on an issue in animal transgenesis. International Journal of Science Education, 23(9), 903–928.
Topcu, M. S., Sadler, T. D., & Yilmaz-Tuzun, O. (2010). Preservice science teachers' informal reasoning about socio-scientific issues: The influence of issue context. International Journal of Science Education, 1-21.
Tsai, C.-C. (1998). Science learning and constructivism. Curriculum and
Teaching, 13, 31-52.
Tsai, C.-C. (1999). ‘Laboratory exercise help me memorize the scientific truths’: A case study of eighth graders’ scientific epistemological views and learning in laboratory activities. Science Education, 83, 654-674.
Tsai, C.-C., & Huang, C.-M. (2002). Exploring students’ cognitive structures in learning science: A review of relevant methods. Journal of Biological Education, 36, 163-169.
van der Zande, P., Brekelmans, M., Vermunt J., & Waarlo A. J.(2009). Moral reasoning in genetics education. Journal of Biological Education,44(1), 31-36.
Walker, K. A., & Zeidler, D. L. (2007). Promoting discourse about SSI through scaffolded inquiry. International Journal of Science Education, 29(11), 1387-1410.
Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. S. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385, 810-813.
White, R. T. (1985). Interview protocols and dimensions of cognitive structure. In L. H. T. West & A. L. Pines (eds.), Cognitive structures and conceptual change, (pp.51-58). Orlando: Academic Press.
Wu, Y.-T., & Tsai, C.-C. (2007). High school students’ informal reasoning on a socio-scientific issue: Qualitative and quantitative analyses. International Journal of Science Education, 29(11), 1163–1187.
Wu, Y.-T., & Tsai, C.-C. (2011). High school students’ informal reasoning regarding a socio-scientific issue, with relations to scientific epistemological beliefs and cognitive structures. International Journal of Science Education, 33, 371-400.
Yang, F.Y., & Anderson, O. R. (2003). Senior high school student’ preference and reasoning modes about nuclear energy use. International Journal of Science Education, 25, 221-244.
Zeidler, D. L., Sadler, T. D., Applebaum, S., & Callahan, B. E. (2009). Advancing reflective judgment through socio-scientific Issues. Journal of Research in Science Teaching, 46, 77-101.
Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research based framework for socio-scientific issues education. Science Education, 89, 357–377.
Zeidler, D. L., Walker, K. A., Ackett, W. A., & Simmons, M. L. (2002). Tangled up in views: Beliefs in the nature of science and responses to socio-scientific dilemmas. Science Education, 86, 343-367.
Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39, 35-62.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top