跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/03 05:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳昭元
研究生(外文):Jau-Yuan Chen
論文名稱:ZnO2/ZnO與Pt/ZnO異質結構觸媒製備及其材料特性與光催化降解有機物之研究
論文名稱(外文):The Study Of ZnO2/ZnO And Pt/ZnO Heterostructures Catalyst Preparation And Its Material Properties And Photocatalytic Degradation Of Organic Compounds
指導教授:陳錦章陳錦章引用關係
指導教授(外文):Chiing-Chang Chen
口試委員:陳建宏張嘉麟
口試委員(外文):Chien-Hong ChenChia-Lin Chang
口試日期:2012-06-27
學位類別:碩士
校院名稱:國立臺中教育大學
系所名稱:科學應用與推廣學系科學教育碩士班
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:138
中文關鍵詞:氯黴素結晶紫ZnO2/ZnOPt/ZnO
外文關鍵詞:chloramphenicolcrystal violetZnO2/ZnOPt/ZnO
相關次數:
  • 被引用被引用:1
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
於奈米光觸媒降解有機汙染物的應用中,氧化鋅(ZnO)與常見的半導體觸媒二氧化鈦(TiO2)一樣具有無毒性、成本低、來源取得容易等優點,也由於氧化鋅(ZnO)擁有寬能隙(wide Band gap)等物理特性,可以有效的利用紫外光激發氧化鋅(ZnO)觸媒產生電子-電洞(photogenerated electron-hole),並與有機汙染物進行光催化降解的反應。然而為了更進一步提升半導體觸媒的光催化效果,除了發展新型的半導體觸媒以增加對可見光區光源的利用外,部分的研究則著重在改質既有的觸媒材料,藉由延遲光生電子-電洞對重組、提升光生電子-電洞對產生效率等作用,以增進光觸媒的反應效率。因此,本研究利用高壓低溫水熱法與光反應程序合成ZnO2/ZnO與Pt/ZnO異質結構觸媒,並在照射紫外光下光催化降解結晶紫染料(CV)及氯黴素(CAP)。研究中以光催化降解有機物的效率作為觸媒最佳合成條件的指標,觸媒樣品經XRD、SEM、EDS、XPS、FTIR、DRS UV-Vis等儀器分析材料特性,並探討材料特性對於光催化效率的影響。而為瞭解其光催化反應機制,經光催化降解後的有機物樣品再以HPLC-PDA-ESI-MS、Ultraviolet/Visible Spectroscopy鑑定反應的中間產物。研究結果顯示,具有異質結構的ZnO2/ZnO與Pt/ZnO可以有效的提升光催化降解效率,並以HPLC-PDA-ESI-MS成功分離與鑑定出CV染料在光催化降解程序中會產生去烷基化及分裂共軛苯環的中間產物,而氯黴素則會產生光解、氧化等中間產物。本研究之結果,將有助於未來半導體觸媒對於光催化降解有機物之應用。
In the application of nano-photocatalytically degrading organic pollutants, zinc oxide (ZnO) presents the same characteristics of non-toxicity, low cost, and accessible sources as the semiconductor catalyst, titanium dioxide (TiO2). Moreover, Zinc oxide (ZnO) shows some physical characteristics like wide band gap that it can effectively excite zinc oxide (ZnO) catalysts with UV to generate electron-holes and precede the photocatalytic degradation with organic pollutants. In order to further enhance the photocatalytic effect of semiconductor catalysts, a new semiconductor catalyst is developed for enhancing the utilization of the light in visible regions. Some research focuses on modifying the existing catalyst materials so as to enhance the reaction efficiency of the photocatalyst by delaying the restructuring of electron-holes and increasing the producing efficiency of photoelectron-holes. In this case, the high-pressure low-temperature hydrothermal method is combined with the light reaction process for the hetero-structured catalysts ZnO2/ZnO and Pt/ZnO, and photocatalytic degradation is preceded for the crystal violet dye (CV) and chloramphenicol (CAP) under the UV light. In the study, the efficiency of photocatalytically degrading organic matter is regarded as the indicator of the optimal catalyst synthesis. The catalyst samples are analyzed the properties with XRD, SEM, EDS, XPS, FTIR, DRS, and UV-Vis in order to discuss the effects of the properties on the photocatalytic efficiency. Furthermore, the photocatalytically degraded organic samples are identified the reaction intermediates with HPLC-PDA-ESI-MS and Ultraviolet/Visible Spectroscopy to understand the photocatalytic reaction mechanism. The research outcomes show that the hetero-structured ZnO2/ZnO and Pt/ZnO could effectively enhance the efficiency of photocatalytic degradation, HPLC-PDA-ESI-MS could successfully separate and identify that CV dye would produce the intermediates of N-de-alkylation and the split conjugated benzene ring, and chloramphenicol would produce the intermediates from photolysis and oxidation. The results would assist the application of semiconductor catalysts to the photocatalytic degradation of organic matter.
目錄
摘 要 I
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 3
第二章 文獻探討 5
2.1 染料的特性與染整廢水的危害 5
2.1.1 染料 5
2.1.2 染料的特性與分類 6
2.1.3 三苯甲烷類染料 8
2.1.4 染整廢水的危害 9
2.2 染料廢水處理技術 11
2.3氯黴素的特性與氯黴素的危害 14
2.4 高級氧化程序(AOPs) 15
2.5 半導體光催化程序 17
2.6 氧化鋅光觸媒材料改質 19
第三章 實驗材料與方法 21
3.1 實驗材料與設備 22
3.1.1染料 22
3.1.2觸媒合成材料與儀器藥品: 22
3.2 光觸媒合成程序 23
3.2.1合成ZnO2 23
3.2.2合成ZnO2/ZnO光觸媒 24
3.2.3 Pt/ZnO光觸媒合成程序 24
3.3 光催化降解程序 25
3.3.1 UV light/ZnO2-ZnO/Dey 25
3.3.2 UV light/ZnO2-ZnO/CAP 25
3.3.3 UV light/Pt-ZnO/Dey 25
3.4 儀器與分析方法 26
3.4.1 分離與鑑定 26
3.4.2 表面特性分析 27
第四章 結果與討論 29
4.1 ZnO2/ZnO之材料表面特性分析及探討UV/ZnO2-ZnO/CV光催化降解程序之最佳觸媒合成條件 30
4.1.1 合成ZnO2 30
4.1.1.1 掃描式電子顯微鏡(FE-SEM)與X光能量散譜儀(EDS)分析 30
4.1.1.2 比表面積(B.E.T surface area) 31
4.1.1.3 X光粉末繞射儀分析(XRD) 34
4.1.1.4傅立葉轉換紅外線光譜儀(FT-IR) 35
4.1.1.5擴散反射式紫外-可見光光譜(UV-Vis DRS) 36
4.1.1.6 探討光催化降解CV染料之效率 38
4.1.2 合成ZnO2/ZnO (S10-S75以140oC水熱處理2hr製備) 40
4.1.2.1 掃描式電子顯微鏡(FE-SEM)與X光能量散譜儀(EDS)分析 40
4.1.2.2 X光粉末繞射儀分析(XRD) 43
4.1.2.3傅立葉轉換紅外線光譜儀(FTIR) 45
4.1.2.4擴散反射式紫外-可見光光譜(UV-Vis DRS) 46
4.1.2.5探討UV/ZnO2-ZnO光催化降解CV染料之效率 48
4.1.3 合成ZnO2/ZnO (S25以120oC-180oC水熱處理2hr製備) 50
4.1.3.1 掃描式電子顯微鏡(FE-SEM)與X光能量散譜儀(EDS)分析 50
4.1.3.2 X光粉末繞射儀分析(XRD) 53
4.1.3.3高解析電子能譜儀(HRXPS) 54
4.1.3.4傅立葉轉換紅外線光譜儀(FTIR) 57
4.1.3.5擴散反射式紫外-可見光光譜(UV-Vis DRS) 58
4.1.3.6陰極螢光光譜分析(CL) 60
4.1.3.7探討光催化降解CV染料之效率 61
4.1.4 合成ZnO2/ZnO(S25以140oC水熱處理1、2、4hr製備) 63
4.1.4.1 掃描式電子顯微鏡(FE-SEM)與X光能量散譜儀(EDS)分析 63
4.1.4.2 X光粉末繞射儀分析(XRD) 66
4.1.4.3傅立葉轉換紅外線光譜儀(FT-IR) 67
4.1.4.4擴散反射式紫外-可見光光譜(UV-Vis DRS) 69
4.1.4.5探討光催化降解CV染料之效率 71
4.2 Pt/ZnO之材料表面特性分析及探討UV/Pt-ZnO/CV光催化降解程序之最佳觸媒合成條件 73
4.2.1 掃描式電子顯微鏡(FE-SEM)與X光能量散譜儀(EDS)分析 73
4.2.2 比表面積(B.E.T surface area) 74
4.2.3 X光粉末繞射儀分析(XRD) 78
4.2.4高解析電子能譜儀(HRXPS) 79
4.2.5擴散反射式紫外-可見光光譜(UV-Vis DRS) 83
4.2.6探討光催化降解CV染料之效率 85
4.3光化學實驗 88
4.3.1 UV/ZnO2-ZnO/CV光催化降解程序 88
4.3.1.1 光觸媒ZnO2-ZnO濃度的影響 88
4.3.1.2 CV染料溶液中pH值的影響 89
4.3.1.3光降解過程中 CV 染料溶液的 UV-Vis 光譜變化 90
4.3.2 UV/ZnO2-ZnO/CV以及UV/Pt-ZnO/CV光催化降解程序之中間產物分離與鑑定 91
4.3.3 UV/ZnO2-ZnO/CAP光催化降解程序 119
4.3.3.1 UV/ZnO2-ZnO/CAP光催化降解程序之中間產物分離與鑑定 121
第五章 結論與建議 131
5.1結論 131
5.2未來建議 132
參考文獻 133

表目錄
表2.1 染料類型及其應用特性 7
表2.2 染整、皮革與紡織業廢水排放標準 11
表2.3 染整廢水的處理技術 13
表2.4 常見氧化劑的標準還原電位 15
表2.5 AOPS (光化學程序與非光化學程序) 16
表2.6製備奈米光觸媒的化學、物理及物理化學方法 20
表3.1 CV染料及氯黴素(CAP)結構及相關資料 22
表3.2光觸媒合成程序相關實驗參數 24
表3.3 光催化降解程序相關實驗參數 26
表4.1 改變不同H2O2(3.5%)的添加量製備ZnO2之EDS及BET分析表 31
表4.2 ZnO2(S10~S75)以140oC、2hr水熱處理製備觸媒製備之EDS分析表 41
表4.3 ZnO2(S25)以120oC~180oC的不同溫度水熱處理2hr製觸媒之EDS分析表 51
表4.4 ZnO2(S25)以及ZnO2(S25)以120oC~160oC的不同溫度水熱處理2hr製觸媒之XPS分析表。 55
表4.5 ZnO2(S25)以140oC水熱處理1hr、2hr、4hr製備觸媒之XPS分析表 64
表4.6 以不同含量氯鉑酸製備之Pt-ZnO與市售ZnO之EDS分析表 77
表4.7 以不同含量氯鉑酸製備之Pt-ZnO與市售ZnO之XPS分析表。 80
表4.8 CV染料經HPLC-PDA-ESI/MS 分離鑑定後N-de-akylation類型中間產物的相關資訊。 105
表4.9 HPLC-ESI中間產物質譜圖表 106
表4.10 ZnO2/ZnO光催化降解CV染料之主要產物最大濃度與反應時間表 116
表4.11 Pt-ZnO在pH9中光催化降解CV染料主要產物最大濃度與反應時間表 116
表4.12 Pt-ZnO在pH3中光催化降解CV染料主要產物最大濃度與反應時間表 117
表4.13 Aldrich-ZnO在pH9中光催化降解CV染料主要產物最大濃度與反應時間表 117
表4.14 Aldrich-ZnO在pH3中光催化降解CV染料主要產物最大濃度與反應時間表 118
表4.15光催化降解CV之主要反應機構與差異 118
表4.16 HPLC-ESI中間產物質譜圖表 125
表4.17 CAP染料經HPLC-PDA-ESI/MS 分離鑑定後中間產物的相關資訊 127
表4.18 UV光下觸媒ZnO2/ZnO(S25-140-2)對CAP光催化降解之中間產物及其結構。 127

圖目錄
圖2.1 可見光中各波長範圍的顯色及其互補色 5
圖2.2 三苯甲烷母體結構 9
圖2.3 染整廢水簡易處理流程 13
圖2.4 Dye/semiconductor/UV light系統 18
圖3.1 研究方法流程圖 21
圖4.1 改變不同H2O2(3.5%)的添加量製備ZnO2之FE-SEM影像及其EDS圖譜: (a) S10 (b) S25 (c) S50 (d) S75. 33
圖4.2 改變不同H2O2(3.5%)的添加量製備ZnO2之XRD圖譜 34
圖4.3 改變不同H2O2(3.5%)的添加量製備ZnO2之ATR-FTIR圖譜 36
圖4.4 改變不同H2O2(3.5%)的添加量製備ZnO2之UV-Vis DRS圖譜(a)及其Tauc plot圖譜(b)。 38
圖4.5 於(a)UV光和(b)暗室下ZnO2觸媒對CV光催化速率的影響(CV = 0.05 gL-1) 39
圖4.6 ZnO2(S10~S75)以140oC、2hr水熱處理製備觸媒之FE-SEM影像和EDS圖譜: (a)(d) S25-140-2 (b)(e) S50-140-2 (c)(f) S75-140-2. 43
圖4.7 ZnO2(S10~S75)以140oC、2hr水熱處理製備觸媒之XRD圖譜 44
圖4.8 ZnO2(S10~S75)以140oC、2hr水熱處理製備觸媒之ATR-FTIR圖譜 46
圖4.9 ZnO2(S10~S75)以140oC、2hr水熱處理製備觸媒之UV-Vis DRS圖譜(a)及Tauc plot圖譜(b)。 48
圖4.10 (a)UV光和(b)暗室下觸媒S10-140-2~S75-140-2對CV光催化速率的影響(CV = 0.01 gL-1) 49
圖4.11 ZnO2(S25)以120oC~180oC的不同溫度水熱處理2hr製觸媒之FE-SEM影像和EDS圖譜: (a) S25-120-2 (b) S25-140-2 (c) S25-160-2 (d) S25-180-2 53
圖4.12 ZnO2(S25)以及ZnO2(S25)以120oC~180oC的不同溫度水熱處理2hr製觸媒之XRD圖譜 54
圖4.13 ZnO2(S25)以及ZnO2(S25)以120oC~160oC的不同溫度水熱處理2hr製觸媒之XPS圖譜: (a) Zn2p ; (b) O1s. 56
圖4.14 ZnO2(S25)以120oC~160oC的不同溫度水熱處理2hr製觸媒之FTIR圖譜. 58
圖4.15 ZnO2(S25)以120oC~160oC的不同溫度水熱處理2hr製觸媒之UV-Vis DRS圖譜(a)及Tauc plo圖譜 60
圖4.16 ZnO2(S25)以120oC~160oC的不同溫度水熱處理2hr製觸媒之CL圖譜 61
圖4.17 (a)UV光和(b)暗室下觸媒S25-120-2~S25-180-2對CV光催化速率的影響(CV = 0.01 gL-1) 63
圖4.18 ZnO2(S25)以140oC水熱處理1hr、2hr、4hr製備觸媒之FE-SEM影像和EDS圖譜: (a) S25-140-1 (b) S25-140-2 (c) S25-140-4。 66
圖4.19 ZnO2(S25)以140oC水熱處理1hr、2hr、4hr製備觸媒之XRD圖譜 67
圖4.20 ZnO2(S25)以140oC水熱處理1hr、2hr、4hr製備觸媒之FTIR圖譜 68
圖4.21 ZnO2(S25)以140oC水熱處理1hr、2hr、4hr製備觸媒之UV-Vis DRS圖譜(a)及Tauc plo圖譜(b)。 70
圖4.22 (a)UV光和(b)暗室下觸媒S25-140-1、S25-140-2、S25-140-4對CV光催化速率的影響(CV = 0.01 gL-1) 71
圖4.23不同含量氯鉑酸製備之Pt-ZnO與市售ZnO之SEM及EDS圖;(a)Aldrich-ZnO,(b)Pt-ZnO-A,(c)Pt-ZnO-B,(d)Pt-ZnO-C,(e)Pt-ZnO-D,(f)Pt-ZnO-E。 77
圖4.24以不同含量氯鉑酸製備之Pt-ZnO與市售ZnO之XRD圖譜;(a) Aldrich-ZnO,(b)Pt-ZnO-A,(c)Pt-ZnO-B,(d)Pt-ZnO-C,(e)Pt-ZnO-D,(f)Pt-ZnO-E。 78
圖4.25以不同含量氯鉑酸製備之Pt-ZnO與市售ZnO之之XPS圖譜: (a) Suls ; (b) Zn2p;(c) Pt4f。 82
圖4.26以不同含量氯鉑酸製備之Pt-ZnO與市售ZnO之UV-Vis DRS圖譜(a)及及其Tauc plot圖譜(b)。 84
圖4.27 以不同含量氯鉑酸製備之Pt-ZnO與市售ZnO,在pH3(a)及pH9(b)的環境中對CV光催化速率的影響(CV = 0.05 gL-1,100ml;catalyst 0.001gL-)。 86
圖4.28 UV光下不同濃度觸媒ZnO2/ZnO(S25-140-2)對CV光催化速率的影響(CV = 0.01 gL-1) 89
圖4.29 UV光下觸媒ZnO2/ZnO(S25-140-2)於不同pH值(pH3、pH5、pH7、pH9)環境中對CV光催化速率的影響(CV = 0.05 gL-1) 90
圖4.30 UV/ZnO2-ZnO條件下,CV染料隨著光照時間變化之UV-Vis光譜圖(CV:10 mgL-1,ZnO2-ZnO(S25-140-2):0.5 gL-1,at pH 5)。 91
圖4.31 UV光下觸媒ZnO2/ZnO(S25-140-2)對CV光催化降解由0h至36h之相層析圖譜(a) 580 nm、(b) 350 nm、(c) 300 nm。 96
圖4.32 UV光下觸媒Pt-ZnO對CV光催化降解由0h至32h之相層析圖譜(a) 580 nm、(b) 350 nm、(c) 300 nm。 99
圖4.33 UV光下觸媒ZnO2/ZnO(S25-140-2)對CV光催化降解以HPLC-ESI-MS分析之TIC圖。 102
圖4.34 UV光下觸媒Pt-ZnO對CV光催化降解以HPLC-ESI-MS分析之TIC圖。 102
圖4.35UV光下觸媒ZnO2/ZnO(S25-140-2)對CV光催化降解後各中間產物的UV-Vis吸收光譜圖;(a)580nm, (b)350nm, (c)300nm。 103
圖4.36 UV/ZnO2-ZnO/CV之光催化降解反應機構圖;(a)去甲基化,(b)分裂共軛苯環,(c)整體反應路徑。 110
圖4.37 CV染料經ZnO2/ZnO光分解後,各中間產物隨著反應時間的相對時間分布圖。 111
圖4.38 CV染料於pH9的環境下經Pt-ZnO-A光分解後,各中間產物隨著反應時間的相對時間分布圖。 112
圖4.39 CV染料在pH3環境下經Pt-ZnO-A光分解後,各中間產物隨著反應時間的相對時間分布圖。 113
圖4.40 CV染料在pH3環境下經Aldrich-ZnO光分解後,各中間產物隨著反應時間的相對時間分布圖。 114
圖4.41 CV染料在pH3環境下經Aldrich-ZnO光分解後,各中間產物隨著反應時間的相對時間分布圖。 115
圖4.42 UV光下觸媒ZnO2/ZnO(S25-140-2)的光催化降解及光解對CAP光催化速率的影響(CAP = 0.05 gL-1,pH9) 119
圖4.43 光催化降解(a)及光解(b)時間對離子(氯、硝酸、亞硝酸)的產生情況。 120
圖4.44 UV光下觸媒ZnO2/ZnO(S25-140-2)於pH9的環境下對CAP光催化降解16hr之TIC圖譜,(a)ES+,(b)ES-。 123
圖4.45 UV光下觸媒ZnO2/ZnO(S25-140-2)於pH9的環境下對CAP光催化降解16hr之層析圖譜,(a)350nm,(b)280nm。 124
圖4.46 ZnO2/ZnO程序降解CAP之反應路徑。 128
圖4.47 ZnO2/ZnO光催化降解CAP之氧化程序反應路徑。 129

參考文獻
[1] H. Shu, M. Chang, Decolorization effects of six azo dyes by O, UV/O and UV/HO processes, Dyes and Pigments, 65 (2005) 25-31.
[2] D.P. Hagberg, J.-H. Yum, H. Lee, F. De Angelis, T. Marinado, K.M. Karlsson, R. Humphry-Baker, L. Sun, A. Hagfeldt, M. Grätzel, M.K. Nazeeruddin, Molecular Engineering of Organic Sensitizers for Dye-Sensitized Solar Cell Applications, Journal of the American Chemical Society, 130 (2008) 6259-6266.
[3] X. Kong, W. Shi, J. Zhao, M. Wei, X. Duan, Layer-by-layer assembly of electroactive dye/inorganic matrix film and its application as sensor for ascorbic acid, Talanta, 85 (2011) 493-498.
[4] P. Pawinrat, O. Mekasuwandumrong, J. Panpranot, Synthesis of Au–ZnO and Pt–ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes, Catalysis Communications, 10 (2009) 1380-1385.
[5] A.R. Khataee, M.N. Pons, O. Zahraa, Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: Influence of dye molecular structure, Journal of Hazardous Materials, 168 (2009) 451-457.
[6] T.S. Kim, J.K. Kim, K. Choi, M.K. Stenstrom, K.D. Zoh, Degradation mechanism and the toxicity assessment in TiO2 photocatalysis and photolysis of parathion, Chemosphere, 62 (2006) 926-933.
[7] S. Chakrabarti, B.K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, Journal of Hazardous Materials, 112 (2004) 269-278.
[8] S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2, Solar Energy Materials and Solar Cells, 77 (2003) 65-82.
[9] H. Park, W. Choi, Effects of TiO2 Surface Fluorination on Photocatalytic Reactions and Photoelectrochemical Behaviors, The Journal of Physical Chemistry B, 108 (2004) 4086-4093.
[10] N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2, Journal of Photochemistry and Photobiology A: Chemistry, 162 (2004) 317-322.
[11] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chemical Reviews, 95 (1995) 69-96.
[12] N. Barka, S. Qourzal, A. Assabbane, A. Nounah, Y. Ait-Ichou, Factors influencing the photocatalytic degradation of Rhodamine B by TiO2-coated non-woven paper, Journal of Photochemistry and Photobiology A: Chemistry, 195 (2008) 346-351.
[13] C.C. Chen, C.S. Lu, F.D. Mai, C.S. Weng, Photooxidative N-de-ethylation of anionic triarylmethane dye (sulfan blue) in titanium dioxide dispersions under UV irradiation, Journal of Hazardous Materials, 137 (2006) 1600-1607.
[14] W. Zhu, Z. Yang, L. Wang, Application of ferrous-hydrogen peroxide for the treatment of H-acid manufacturing process wastewater, Water Research, 30 (1996) 2949-2954.
[15] C. Hessel, C. Allegre, M. Maisseu, F. Charbit, P. Moulin, Guidelines and legislation for dye house effluents, Journal of Environmental Management, 83 (2007) 171-180.
[16] S. Abbruzzetti, M. Carcelli, P. Pelagatti, D. Rogolino, C. Viappiani, Photoinduced alkaline pH-jump on the nanosecond time scale, Chemical Physics Letters, 344 (2001) 387-394.
[17] C.C. Chen, C.S. Lu, Y.C. Chung, Photocatalytic degradation of ethyl violet in aqueous solution mediated by TiO2 suspensions, Journal of Photochemistry and Photobiology A: Chemistry, 181 (2006) 120-125.
[18] K.K.H. Choy, G. McKay, J.F. Porter, Sorption of acid dyes from effluents using activated carbon, Resources, Conservation and Recycling, 27 (1999) 57-71.
[19] L.M. Games, R.A. Hites, Composition, treatment efficiency, and environmental significance of dye manufacturing plant effluents, Analytical Chemistry, 49 (1977) 1433-1440.
[20] S. Huseyin, Decolorization and detoxification of textile wastewater by ozonation and coagulation processes, Dyes and Pigments, 64 (2005) 217-222.
[21] A. Srinivasan, T. Viraraghavan, Decolorization of dye wastewaters by biosorbents: A review, Journal of Environmental Management, 91 (2010) 1915-1929.
[22] M. Kobya, O.T. Can, M. Bayramoglu, Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes, Journal of Hazardous Materials, 100 (2003) 163-178.
[23] S.H. Lin, M.L. Chen, Treatment of textile wastewater by chemical methods for reuse, Water Research, 31 (1997) 868-876.
[24] T.L. Hu, C. Lin, K.Y. Chiang, Simulations of organic carbon transformation in dye wastewater and treatment suggestions, Advances in Environmental Research, 8 (2004) 493-500.
[25] Z. Wang, M. Xue, K. Huang, Z. Liu, Textile Dyeing Wastewater Treatment, Advances in Treating Textile Effluent, in: P.J. Hauser (Ed.), InTech, 2011.
[26] H. Fu, S. Zhang, T. Xu, Y. Zhu, J. Chen, Photocatalytic Degradation of RhB by Fluorinated Bi2WO6 and Distributions of the Intermediate Products, Environmental Science & Technology, 42 (2008) 2085-2091.
[27] H. Park, W. Choi, Photocatalytic Reactivities of Nafion-Coated TiO2 for the Degradation of Charged Organic Compounds under UV or Visible Light, The Journal of Physical Chemistry B, 109 (2005) 11667-11674.
[28] S.W. Page, Chloramphenicol 1. Hazards of use and the current regulatory environment, Australian Veterinary Journal, 68 (1991) 1-2.
[29] م. مهدیزاده, ک. کازرانی, ج. جمشیدی, Screening of Chloramphenicol Residues in Broiler Chickens Slaughtered in an Industrial Poultry Abattoir in Mashhad, Iran, 2010.
[30] C. Blasco, Y. Picó, C.M. Torres, Progress in analysis of residual antibacterials in food, TrAC Trends in Analytical Chemistry, 26 (2007) 895-913.
[31] T. Heberer, Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data, Toxicology Letters, 131 (2002) 5-17.
[32] S.K. Behera, H.W. Kim, J.E. Oh, H.S. Park, Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea, Science of The Total Environment, 409 (2011) 4351-4360.
[33] K.D. Brown, J. Kulis, B. Thomson, T.H. Chapman, D.B. Mawhinney, Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico, Science of The Total Environment, 366 (2006) 772-783.
[34] F.H. Hussein, Photochemical Treatments of Textile Industries Wastewater, Advances in Treating Textile Effluent, in: P.J. Hauser (Ed.), InTech, 2011.
[35] A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chemical Reviews, 95 (1995) 735-758.
[36] T. Yonar, Decolorisation of Textile Dyeing Effluents Using Advanced Oxidation Processes, Advances in Treating Textile Effluent, in: P.J. Hauser (Ed.), InTech, 2011.
[37] M. Kitano, T. Okabe, M. Shiojiri, Morphology and growth mechanism of ZnO particles electro-crystallized on Zn in aqueous solution, Journal of Crystal Growth, 166 (1996) 1116-1120.
[38] V. Srikant, D.R. Clarke, On the optical band gap of zinc oxide, Journal of Applied Physics, 83 (1998) 5447-5451.
[39] J. Zhou, M. Takeuchi, A.K. Ray, M. Anpo, X.S. Zhao, Enhancement of photocatalytic activity of P25 TiO2 by vanadium-ion implantation under visible light irradiation, Journal of Colloid and Interface Science, 311 (2007) 497-501.
[40] H.J. Fan, C.S. Lu, W.L.W. Lee, M.R. Chiou, C.C. Chen, Mechanistic pathways differences between P25-TiO2 and Pt-TiO2 mediated CV photodegradation, Journal of Hazardous Materials, 185 (2011) 227-235.
[41] K.T. Chen, C.S. Lu, T.H. Chang, Y.Y. Lai, C.W. Wu, C.C. Chen, Comparison of photodegradative efficiencies and mechanisms of Victoria Blue R assisted by Nafion-coated and fluorinated TiO2 photocatalysts, Journal of Hazardous Materials, 174 (2010) 598-609.
[42] C.C. Chen, C.S. Lu, H.J. Fan, W.H. Chung, J.L. Jan, H.D. Lin, W.Y. Lin, Photocatalyzed N-de-ethylation and degradation of Brilliant Green in TiO2 dispersions under UV irradiation, Desalination, 219 (2008) 89-100.
[43] J. Houk, M. Dezube, J.M. Rovinski, M.J. Doa, Evaluation of dyes submitted under the toxic substances control act new chemicals program, 1988.
[44] Y.C. Zhang, X. Wu, X. Ya Hu, R. Guo, Low-temperature synthesis of nanocrystalline ZnO by thermal decomposition of a “green” single-source inorganic precursor in air, Journal of Crystal Growth, 280 (2005) 250-254.
[45] S.N. Frank, A.J. Bard, Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder, Journal of the American Chemical Society, 99 (1977) 303-304.
[46] A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1 (2000) 1-21.
[47] M. Sun, W. Hao, C. Wang, T. Wang, A simple and green approach for preparation of ZnO2 and ZnO under sunlight irradiation, Chemical Physics Letters, 443 (2007) 342-346.
[48] L.Y. Yang, G.P. Feng, T.X. Wang, Green synthesis of ZnO2 nanoparticles from hydrozincite and hydrogen peroxide at room temperature, Materials Letters, 64 (2010) 1647-1649.
[49] D. Wang, F. Ammari, R. Touroude, D.S. Su, R. Schlögl, Promotion effect in Pt–ZnO catalysts for selective hydrogenation of crotonaldehyde to crotyl alcohol: A structural investigation, Catalysis Today, 147 (2009) 224-230.
[50] L. Mi Ae, L. Young Wook, H. Sang Woo, P. Inkyu, Novel fabrication method of diverse one-dimensional Pt/ZnO hybrid nanostructures and its sensor application, Nanotechnology, 22 (2011) 035601.
[51] H. Zeng, P. Liu, W. Cai, S. Yang, X. Xu, Controllable Pt/ZnO Porous Nanocages with Improved Photocatalytic Activity, The Journal of Physical Chemistry C, 112 (2008) 19620-19624.
[52] Q.A. Drmosh, M.A. Gondal, Z.H. Yamani, T.A. Saleh, Spectroscopic characterization approach to study surfactants effect on ZnO2 nanoparticles synthesis by laser ablation process, Applied Surface Science, 256 (2010) 4661-4666.
[53] D. Scarano, S. Bertarione, G. Spoto, A. Zecchina, C. Otero Areán, FTIR spectroscopy of hydrogen, carbon monoxide, and methane adsorbed and co-adsorbed on zinc oxide, Thin Solid Films, 400 (2001) 50-55.
[54] M.A. Gondal, Q.A. Drmosh, Z.H. Yamani, T.A. Saleh, Synthesis of ZnO2 nanoparticles by laser ablation in liquid and their annealing transformation into ZnO nanoparticles, Applied Surface Science, 256 (2009) 298-304.
[55] A.L. Companion, The diffuse reflectance spectra of zinc oxide and zinc peroxide, Journal of Physics and Chemistry of Solids, 23 (1962) 1685-1688.
[56] C.C. Hsu, N.L. Wu, Synthesis and photocatalytic activity of ZnO/ZnO2 composite, Journal of Photochemistry and Photobiology A: Chemistry, 172 (2005) 269-274.
[57] G. Xiong, U. Pal, J.G. Serrano, K.B. Ucer, R.T. Williams, Photoluminesence and FTIR study of ZnO nanoparticles: the impurity and defect perspective, physica status solidi (c), 3 (2006) 3577-3581.
[58] S. Sakthivel, M.V. Shankar, M. Palanichamy, B. Arabindoo, D.W. Bahnemann, V. Murugesan, Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst, Water Research, 38 (2004) 3001-3008.
[59] W.L.W. Lee, S.T. Huang, J.L. Chang, J.Y. Chen, M.C. Cheng, C.C. Chen, Photodegradation of CV over nanocrystalline bismuth tungstate prepared by hydrothermal synthesis, Journal of Molecular Catalysis A: Chemical.
[60] A. Chatzitakis, C. Berberidou, I. Paspaltsis, G. Kyriakou, T. Sklaviadis, I. Poulios, Photocatalytic degradation and drug activity reduction of Chloramphenicol, Water Research, 42 (2008) 386-394.
[61] L. Hong, A. Horni, M. Hesse, H. Altorfer, Identification and evaluation of radiolysis products of irradiated chloramphenicol by HPLC-MS and HPLC-DAD, Chromatographia, 55 (2002) 13-18.
[62] T. Csay, G. Rácz, E. Takács, L. Wojnárovits, Radiation induced degradation of pharmaceutical residues in water: Chloramphenicol, Radiation Physics and Chemistry.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top