跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/27 13:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李彩瓊
研究生(外文):Lee Tsai-Chuang
論文名稱:以費頓、類費頓、光-費頓和光-類費頓處理酸性湖藍V與乙基紫染料之效率與反應中間產物鑑定之研究
論文名稱(外文):The the Study of Fenton、Fenton-like、Photo-Fenton、Photo-Fenton -like processing efficiency reactionand intermediates identification of Acid Bule 1 and Ethyl Violet dye
指導教授:陳錦章陳錦章引用關係
指導教授(外文):Chen,Jin-Jhang
口試委員:張嘉麟盧長興
口試委員(外文):J.-L. ChangC.S.Lu
口試日期:2012-08-17
學位類別:碩士
校院名稱:國立臺中教育大學
系所名稱:科學應用與推廣學系科學教育碩士班
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:224
中文關鍵詞:光-費頓光-類費頓類費頓費頓去烷基化羥化開環
外文關鍵詞:Photo-FentonPhoto-Fenton-likeFentonFenton-likeAB1EVDealkylation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本研究選擇高級氧化程序中的光-費頓(Photo-Fenton)、費頓(Fenton)、光類費頓(Photo-Fenton-like)及類費頓(Fenton-like)等四種方法來降解難以分解的染料,本研究採上述四種方法分別降解酸性藍(Acid Blue 1, AB1)及乙基紫(Ethyl Violet, EV)染料,共計8個實驗。這些方法是利用均相催化產生強大氧化能力,使染料達成降解效果。本實驗嘗試以這四種方法處理AB1及EV染料進行降解的可行性評估,並探討這四種方法試劑中各反應物濃度及pH值對反應的影響。並利用HPLC-UV-ESI-MS分離鑑定AB1及EV降解中間產物,提出可能降解路徑,推測及討論其降解的路徑,提供處理工業染料廢水的參考。
最適化降解效率分別如下: AB1降解使用光-費頓法、費頓法之最佳化濃度皆為0.5 mM FeSO4 和10 mM H2O2;光-類費頓法、類費頓法最佳化濃度為2 mM Fe(NO3)3 和160 mM H2O2。EV降解使用光-費頓法、費頓法最佳化濃度皆為0.5 mM FeSO4 和5 mM H2O2;光-類費頓法最佳化濃度、類費頓法最佳化濃度為 2m M Fe(NO3)3和160 mM H2O2。AB1、EV在四種方法降解效果都是 pH=3>4>5。在光源方面不管是AB1或EV在光-費頓中確實比費頓法有效(光-類費頓法比類費頓法有效),且若使用非常高瓦數的254nm紫外光照射效果更能顯著呈現出來。此外,在降解實驗中也發現光-費頓法及費頓法效果比光-類費頓法及類費頓法好。
利用 HPLC-PDA-ESI- MS分離鑑定AB1及EV染料中間產物,探討可能降解路徑。在光-費頓法降解AB1及EV之反應中成功找出中間產物,當AB1在極少量的氧化劑(H2O2)降解速率非常快速,所以苯環開環開得非常快速,因此AB1較無法找出較多的中間產物。提出AB1、EV可能之降解反應機制為發色基團之去烷基化 (Dealkylation)、羥化 (Hydroxy-lation)反應與破壞發色基團之共振結構(Cleavage of conjugated chromophore structure),以提供光觸媒處理染料應用基礎。
The research aimed to investigate dye degradation using the advanced oxidation treatments, including Fenton, Photo-Fenton, Photo-Fenton-like, and Fenton-like systems. There were eight homogeneous catalytic experiments containing the interactions between two types of dyes, Acid Blue 1 (AB1) and Ethyl Violet (EV), and four oxidation treatments. These methods apply the homogeneous catalytic experiments which yield powerful oxidization to degrade various types of dyes. The purpose is to evaluate the ability of degradation of AB1 and EV and assess the effects of different levels of reagent concentration and pH ratio from these four oxidation treatments respectively. In addition, the HPLC–PDA-ESI-MS is applied to separating and identifying the impact of ABI and EV on the degradation of generated intermediates. As a result, the possible degradation pathways can be inferred and argued in order to provide a stylized fact for the industrial dye wastewater.
The experimental results are shown as follows. (1) The optimum AB1 degradation are 0.5mM FeSO4 and 10m MH2O2 during Photo-Fenton and Fenton; and 2mM Fe(NO3)3 and160m MH2O2 during Photo-Fenton-like and Fenton-like. (2) The optimum EV degradation are 0.5mM FeSO4 and 5mM H2O2 during Photo-Fenton and Fenton; and 2mM Fe(NO3)3 and 160mM H2O2 during Photo-Fenton-like and Fenton-like. (3) The optimum pH is about 3 regardless of different oxidation treatments.
Regardless of AB1 or EV in the Photo-Fenton, Fenton (Photo-Fenton-like, Fenton-like), requiring very high wattage 254nm UV irradiation effect, can be significantly presentedin the light. Generally speaking, the degradationexperiments show that Photo-Fenton and Fenton treatments are more efficient than the Photo-Fenton-like and Fenton-like.
This research also utilizes the HPLC–PDA-ESI-MS for separating and identifying the impact of AB1 and EV in order to uncover the dye degradationpathways. The intermediates are generated by the degradation of AB1 and EV under Photo-Fenton. However, the AB1 with a very small amount of oxidant (H2O2) efficiently accelerates the degradation, leading to rapid Benzene ring-opening reactions, such that few intermediates are found. In addition, the results indicate that the probable degradation pathways are Dealkylation and Hydroxy-lation of chromophore, and cleavage of the conjugated chromophore structure. The findings provide the fundamental applications of photocatalyst to dye degradation.

目錄
摘要 I
Abstract III
目錄 V
圖目錄 IX
表目錄 XIX
第一章 緒論 1
1-1前言 1
1-2 研究動機 3
1-3 研究目的 4
第二章 文獻探討 5
2-1 染料及染整廢水之特性與危害 5
2-1-1染料 5
2-1-2染料的特性 6
2-1-3染料的分類: 7
2-1-4染料的危害 10
2-1-5三苯甲烷類染料 10
2-2染整廢水的特性與危害 11
2-3染料廢水相關處理技術 13
2-3-1 常用處理技術 14
2-3-2 化學氧化法之技術種類 16
2-4 UV/H2O2法原理 22
2-5 Fenton 法原理 24
2-5-1 Fenton 法之理論 24
2-5-2 Fenton 之反應機制 25
2-5-3 Fenton程序的反應過程 25
2-5-4 Fenton 試劑去除率之影響因素 26
2-6 Photo-Fenton 法原理 29
2-7 Fenton-like法原理 30
2-7-1 Fenton-like 簡介 30
2-7-2 Fenton-like 反應機制 31
2-7-3 Fenton-like 反應之影響因子 32
第三章 實驗材料與方法 33
3-1 實驗材料 34
3-1-1染料 34
3-1-2 實驗藥品 36
3-1-3 實驗設備 36
3-2 照光程序 37
3-3 實驗方法 39
3-3-1 Photo-Fenton、Fenton降解AB1、EV染料(實驗一~四) 40
3-3-2 Photo-Fenton-like、Fenton-like降解AB1、EV(實驗五~八) 41
3-4 實驗儀器與分析方法: 42
3-4-1 酸鹼度計/pH meter analyzer 42
3-4-2 分離與鑑定 42
第四章 結果與討論(一) 45
4-1硫酸鹽高級氧化程序:Photo-Fenton降解AB1、EV染料的效率和機構探討 45
4-1-1 實驗一:AB1染料 46
4-1-2 實驗二:EV染料 58
4-2硫酸鹽高級氧化程序:Fenton降解AB1、EV染料的效率和機構探討 102
4-2-1 實驗三:AB1染料 103
4-2-2 實驗四:EV染料 116
4-3硫酸鹽高級氧化程序:Photo-Fenton-like降解AB1、EV染料的效率和機構探討 129
4-3-1 實驗五:AB1染料 130
4-3-2 實驗六:EV染料 142
4-4硝酸鹽高級氧化程序:Fenton-like降解AB1、EV染料的效率和機構探討 154
4-4-1 實驗七:AB1染料 155
4-4-2 實驗八:EV染料 168
第五章 結論與建議 189
5-1硫酸鹽高級氧化程序:Photo-Fenton降解AB1、EV染料的效率和機構探討 189
5-1-1 實驗一:AB1 189
5-1-2 實驗二:EV 190
5-2硫酸鹽高級氧化程序:Fenton降解AB1、EV染料的效率和機構探討 190
5-2-1 實驗三:AB1 190
5-2-2實驗四:EV 191
5-3硫酸鹽高級氧化程序:Photo-Fenton-like降解AB1、EV染料的效率和機構探討 191
5-3-1實驗五:AB1 191
5-3-2實驗六:EV 192
5-4硫酸鹽高級氧化程序:Fenton-like降解AB1、EV染料的效率和機構探討 192
5-4-1實驗七:AB1 192
5-4-2 實驗八:EV 193
5-5建議 193
參考文獻 194

圖目錄
圖 2 . 1 三苯甲烷母體結構 11
圖 3 . 1 研究方法流程圖 33
圖 3 . 2 照光設備: 37
圖 3 . 3實驗一~四 40
圖 3 . 4 實驗五~八 41
圖 3 . 5 高效能液相層析儀(HPLC-PDA-ESI/MS) 44
圖 3 . 6 紫外光譜儀(PDA UV-Vis) 44
圖 4 . 1 AB1之UV光源直接光解圖 46
圖 4 . 2單獨FeSO4觸媒和UV光源的條件對AB1染料降解圖 47
圖 4 . 3單獨H2O2觸媒和UV光源的條件對AB1染料降解圖 48
圖 4 . 4 FeSO4、H2O2兩種觸媒和UV光源的條件對AB1染料降解圖 49
圖 4 . 5 Photo-Fenton系統中,固定Fe2+濃度,不同濃度之H2O2對AB1染料之降解效率圖 51
圖 4 . 6 Photo-Fenton系統中,固定H2O2濃度,不同濃度之Fe2+對AB1染料之降解效率圖 51
圖 4 . 7 Photo-Fenton系統中,不同pH值之對AB1染料之降解效率圖 52
圖 4 . 8 Photo-Fenton系統中,降解AB1染料隨著時間變化的HPLC層析圖 55
圖 4 . 9 Photo-Fenton系統中,AB1染料溶液的UV光譜變化圖 166

圖 4 . 10 Photo-Fenton系統中,降解AB1染料之中間產物在580nm的濃度分佈圖 56
圖 4 . 11 Photo-Fenton系統中,降解AB1染料之中間產物在385nm的濃度分佈圖 57
圖 4 . 12 EV之UV光源直接光解圖 58
圖 4 . 13單獨FeSO4觸媒和UV光源的條件對EV染料降解圖 59
圖 4 . 14單獨H2O2觸媒的條件對EV染料降解圖 60
圖 4 . 15 FeSO4及H2O2兩種觸媒條件對EV染料降解圖 61
圖 4 . 16 Photo-Fenton系統中,固定Fe2+濃度,不同濃度之H2O2對EV染料之降解效率圖 63
圖 4 . 17 Photo-Fenton系統中,固定H2O2濃度,不同濃度之Fe2+對EV染料之降解效率圖。 63
圖 4 . 18 Photo-Fenton系統中,不同pH值之對EV染料之降解效率圖 64
圖 4 . 19 Photo-Fenton 系統中,EV染料之中間產物HPLC層析圖 67
圖 4 .20 Photo-Fenton系統中,EV染料溶液的UV光譜變化圖 1668
圖 4 . 21 Photo-Fenton系統中,降解EV染料之中間產物在580nm的濃度分佈圖 68
圖 4 . 22 Photo-Fenton系統中,降解EV染料之中間產物在350nm的濃度分佈圖 69
圖 4 .23 Photo-Fenton系統中,降解AB1染料之中間產物HPLC層析圖 70
圖 4 . 24 Photo-Fenton 系統中降解AB1染料的中間產物等高圖 73
圖 4 . 25 Photo-Fenton系統中,降解AB1染料之總離子層析圖譜 74
圖 4 . 26 Photo-Fenton系統中,降解AB1染料的中間產物的反應機制圖(一) 81
圖 4 . 27 Photo-Fenton系統中,降解AB1染料的中間產物的反應機制圖(二) 83
圖 4 . 28 Photo-Fenton系統中,降解EV染料之中間產物HPLC層析圖 86
圖 4 . 29 Photo-Fenton 系統中,降解EV染料的總離子層析圖譜(ES+)(*為未知物) 87
圖 4 . 30 Photo-Fenton 系統中,降解EV染料的總離子層析放大圖譜 87
圖 4 . 31 Photo-Fenton 系統中,降解EV染料的中間產物等高圖 89
圖 4 . 32 Photo-Fenton系統中,降解EV染料的中間產物之反應機制圖(一) 94
圖 4 . 33 Photo-Fenton系統中,降解EV染料的中間產物之反應機制圖(二) 95
圖 4 . 34 Photo-Fenton系統中,降解EV染料的中間產物之反應機制圖(三~路徑1) 96
圖 4 . 35 Photo-Fenton系統中,降解EV染料的中間產物之反應機制圖(三~路徑2) 97
圖 4 . 36 Photo-Fenton系統中,降解EV染料的中間產物之反應機制圖(三~路徑3) 98
圖 4 . 37 Photo-Fenton系統中,降解EV染料的中間產物之反應機制圖(三~路徑4) 99
圖 4 . 38 Photo-Fenton系統中,降解EV染料的中間產物之反應機制圖(四) 100
圖 4. 39 暗室中,降解AB1染料降解圖 1003
圖 4 . 40 暗室中,單獨FeSO4觸媒的條件對AB1染料降解圖 104
圖 4 . 41 暗室中,單獨H2O2觸媒的條件對AB1染料降解圖 105
圖 4 . 42 暗室中FeSO4及H2O2兩種觸媒條件對AB1染料降解圖 106
圖 4 . 43 Fenton系統中,固定Fe2+濃度不同濃度之H2O2對AB1染料之降解效率圖 108
圖 4 . 44 Fenton系統中,固定H2O2濃度,不同濃度之Fe2+對AB1染料之降解效率圖 108
圖 4 . 45 Fenton系統中,不同pH值之對AB1染料之降解效率 110
圖 4 . 46 Photo-Fenton及Fenton系統中,不同燈源強度之對AB1染料之降解效率 110
圖 4 . 47 Fenton系統中,降解AB1染料隨著時間變化的HPLC層析圖 113
圖 4 . 48 Fenton系統中,AB1染料溶液的UV光譜變化 114
圖 4 . 49 Fenton系統中,降解AB1染料之中間產物在580nm的濃度分佈圖 114
圖 4 . 50 Fenton系統中,降解AB1染料之中間產物在385nm的濃度分佈圖 115
圖 4 . 51 EV在暗室系統中直接降解圖 116
圖 4 . 52在暗室中單獨FeSO4觸媒的條件對EV染料降解圖 117
圖 4 . 53 暗室中,單獨H2O2觸媒的條件對EV染料降解圖 118
圖 4 . 54 暗室中,FeSO4及H2O2兩種觸媒條件對EV染料降解圖 119
圖 4 . 55 Fenton系統中,固定Fe2+濃度,不同濃度之H2O2對EV染料之降解效率 121
圖 4 . 56 Fenton系統中,固定H2O2濃度,不同濃度之Fe2+對EV染料之降解效率 121
圖 4 . 57 Fenton系統中,不同pH值之對EV染料之降解效率圖 123
圖 4 . 58 Photo-Fenton及 Fenton系統中,不同燈源強度之對EV染料之降解效率圖 123
圖 4 . 59 Fenton 系統中,EV染料之中間產物HPLC層析圖 126
圖 4 . 60 Fenton 系統中,EV染料隨著時間降解的光譜圖 127
圖 4 . 61 Fenton系統中,降解EV染料之中間產物在580nm的濃度分佈圖 127
圖 4 . 62 Fenton系統中,降解EV染料之中間產物在350nm的濃度分佈圖 128
圖 4 . 63 AB1之UV光源直接光解圖 130
圖 4 . 64 單獨Fe(NO3)3觸媒和UV光源的條件對AB1染料降解圖 131
圖 4 . 65 單獨H2O2觸媒和UV光源的條件對AB1染料降解圖 132
圖 4 . 66 Fe(NO3)3、H2O2和UV光源兩種觸媒條件對AB1染料降解圖 133
圖 4 . 67 Photo-Fenton-like系統中,固定Fe3+濃度,不同濃度之H2O2對AB1染料之降解效率圖 135
圖 4 . 68 Photo-Fenton-like系統中,固定H2O2濃度,不同濃度之Fe3+對AB1染料之降解效率圖 135
圖 4 . 69 Photo-Fenton-like系統中,不同pH值之對AB1染料之降解效率 136
圖 4 . 70 Photo-Fenton-like降解AB1染料隨著時間變化的HPLC層析圖 139
圖 4 . 71 Photo-Fenton-like系統中,AB1染料溶液的UV光譜變化 140
圖 4 . 72 Photo-Fenton-like系統中,降解AB1染料之中間產物在580nm的濃度分佈圖 140
圖 4 . 73 Photo-Fenton-like系統中,降解AB1染料之中間產物在385nm的濃度分佈圖 141
圖 4 . 74 EV之UV光源直接光解圖 142
圖 4 . 75單獨Fe(NO3)3觸媒和UV光源的條件對EV染料降解圖 143
圖 4 . 76單獨H2O2觸媒和UV光源的條件對EV染料降解圖 144
圖 4 . 77 Fe(NO3)3、H2O2兩種觸媒和UV光源的條件對EV染料降解圖 145
圖 4 . 78 Photo-Fenton-like系統中,固定Fe3+濃度,不同濃度之H2O2對EV染料之降解效率 147
圖 4 . 79 Photo-Fenton-like系統中,固定H2O2濃度,不同濃度之Fe3+對EV染料之降解效率 147
圖 4 . 80 Photo-Fenton-like系統中,不同pH值之對EV染料之降解效率圖 148
圖 4 . 81 Photo-Fenton-like 系統中,EV染料之中間產物HPLC層析圖 151
圖 4 . 82 Photo-Fenton-like系統中,EV染料溶液的UV光譜變化圖 152
圖 4 . 83 Photo-Fenton-like系統中,降解EV染料之中間產物在580nm的濃度分佈圖 152
圖 4 . 84 Photo-Fenton-like系統中,降解EV染料之中間產物在350nm的濃度分佈圖 153
圖 4 . 85暗室中, AB1之直接降解圖 155
圖 4 . 86 暗室中,單獨Fe(NO3)3觸媒的條件對AB1染料降解圖 156
圖 4 . 87 暗室中,單獨H2O2觸媒的條件對AB1染料降解圖 157
圖 4 . 88 暗室中,Fe(NO3)3及H2O2兩種觸媒條件對AB1染料降解圖 158
圖 4 . 89 Feton-like系統中,固定Fe3+濃度,不同濃度之H2O2對AB1染料之降解效率圖 160
圖 4 . 90 Feton-like系統中,固定H2O2濃度,不同濃度之Fe3+對AB1染料之降解效率圖 160
圖 4 . 91 Feton-like系統中,不同pH值之對AB1染料之降解效率圖 162
圖 4 . 92 Photo-Fenton-like及Fenton-like系統中,不同燈源強度之對AB1染料之降解效率圖 162
圖 4 . 93 Fenton-like降解AB1染料隨著時間變化的HPLC層析圖 165
圖 4 . 94 Fenton-like系統中,AB1染料溶液的UV光譜變化圖 166
圖 4 . 95Fenton-like 系統中,降解AB1染料之中間產物在580nm的濃度分佈圖 167
圖 4 . 96 Fenton-like系統中,降解AB1染料之中間產物在385nm的濃度分佈圖 167
圖 4 . 97暗室中,EV之直接降解圖 168
圖 4 . 98 暗室中,單獨Fe(NO3)3觸媒的條件對EV染料降解圖 169
圖 4 . 99 暗室中,單獨H2O2觸媒的條件對EV染料降解圖 170
圖 4 . 100 暗室中, Fe(NO3)3及H2O2兩種觸媒條件對EV染料降解圖 171
圖 4 . 101 Fenton-like系統中,固定Fe3+濃度,不同濃度之H2O2對EV染料之降解效率圖 173
圖 4 . 102 Fenton-like系統中,固定H2O2濃度,不同濃度之Fe3+對EV染料之降解效率圖 173
圖 4 . 103 Fenton-like 系統中,不同pH值之對EV染料之降解效率圖 175
圖 4 . 104 Photo-Fenton-like及Fenton-like系統中,不同的燈源對EV染料之降解效率圖 175
圖 4 . 105 Fenton-like 系統中,EV染料之中間產物HPLC層析圖 178
圖 4 . 106 Fenton-like系統中,EV染料溶液的UV光譜變化圖 166
圖 4 . 107 Fenton-like系統中,降解EV染料之中間產物在580nm的濃度分佈圖 179
圖 4 . 108 Fenton-like系統中,降解EV染料之中間產物在350nm的濃度分佈圖 180

表目錄
表 2 - 1吸收光譜色和顯示的顏色 6
表 2 - 2染料廢水之普遍特性 12
表 2 - 3染整業放流水標準[34] 13
表 2 - 4傳統之染整廢水處理技術[41] 15
表 2 - 5氧化電位表[43] 19
表 2 - 6常見之AOPs 處理方法[43] 20
表 2 - 7廢水之各處理方法優缺點比較表[44] 21
表 2 - 8 Fenton反應過程[55] 26
表 2 - 9 pH值對於Fenton反應影響 29
表 3 - 1 AB1染料結構及相關資料 34
表 3 - 2 EV染料結構及相關資料 35
表 3 - 3 各項實驗參數 38
表 3 - 4 HPLC 分離過程中各時間的溶劑比例 43
表 4 - 1 AB1-ES+ mass spectra 中間產物HPLC-ESI質譜圖表 75
表 4 - 2 AB1- ES- mass spectra 中間產物HPLC-ESI質譜圖表 78
表 4 - 3 Photo-Fenton系統中,降解AB1之中間產物表(HPLC-PDA-ESI/MS) 80
表 4 - 4 Photo-Fenton系統中,降解AB1之總反應路徑機制圖 83
表 4 - 5 EV-ES+ mass spectra 中間產物HPLC-ESI質譜圖表 90
表 4 - 6 Photo-Fenton系統中,降解EV之中間產物表(LC-MS) 101


參考文獻
[1] N. Allen, Synthesis, Properties and Applications of Organic Dyes and Pigments (2nd Edition ) : By H. Zollinger, published by VCH, Cambridge,ISBN 3-527-28352-8, Journal of Photochemistry and Photobiology A: Chemistry, 67 (1992) 385-386.
[2] C. Bauer, P. Jacques, A. Kalt, Photooxidation of an azo dye induced by visible light incident on the surface of TiO2, Journal of Photochemistry and Photobiology A: Chemistry, 140 (2001) 87-92.
[3] B. Noroozi, G.A. Sorial, H. Bahrami, M. Arami, Equilibrium and kinetic adsorption study of a cationic dye by a natural adsorbent—Silkworm pupa, Journal of Hazardous Materials, 139 (2007) 167-174.
[4] M. Kobya, O.T. Can, M. Bayramoglu, Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes, Journal of Hazardous Materials, 100 (2003) 163-178.
[5] H. Chun, W. Yizhong, Decolorization and biodegradability of photocatalytic treated azo dyes and wool textile wastewater, Chemosphere, 39 (1999) 2107-2115.
[6] C.I. Pearce, J.R. Lloyd, J.T. Guthrie, The removal of colour from textile wastewater using whole bacterial cells: a review, Dyes and Pigments, 58 (2003) 179-196.
[7] P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Advances in Environmental Research, 8 (2004) 501-551.
[8] H.J. Fan, S.T. Huang, W.H. Chung, J.L. Jan, W.Y. Lin, C.C. Chen, Degradation pathways of crystal violet by Fenton and Fenton-like systems: Condition optimization and intermediate separation and identification, Journal of Hazardous Materials, 171 (2009) 1032-1044.
[9] H.J. Hsing, P.C. Chiang, E.E. Chang, M.Y. Chen, The decolorization and mineralization of Acid Orange 6 azo dye in aqueous solution by advanced oxidation processes: A comparative study, Journal of Hazardous Materials, 141 (2007) 8-16.
[10] A. de O. Martins, V.M. Canalli, C.M.N. Azevedo, M. Pires, Degradation of pararosaniline (C.I. Basic Red 9 monohydrochloride) dye by ozonation and sonolysis, Dyes and Pigments, 68 (2006) 227-234.
[11] H.Y. Shu, M.C. Chang, Decolorization effects of six azo dyes by O3, UV/O3 and UV/H2O2 processes, Dyes and Pigments, 65 (2005) 25-31.
[12] E.C. Wert, F.L. Rosario-Ortiz, D.D. Drury, S.A. Snyder, Formation of oxidation byproducts from ozonation of wastewater, Water Research, 41 (2007) 1481-1490.
[13] C.P. Huang, C. Dong, Z. Tang, Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment, Waste Management, 13 (1993) 361-377.
[14] W. Zhu, Z. Yang, L. Wang, Application of ferrous hydrogen peroxide for treatment of DSD-acid manufacturing process wastewater, Water Research, 35 (2001) 2087-2091.
[15] A.E. Papadopoulos, D. Fatta, M. Loizidou, Development and optimization of dark Fenton oxidation for the treatment of textile wastewaters with high organic load, Journal of Hazardous Materials, 146 (2007) 558-563.
[16] C.W. Li, Y.M. Chen, Y.C. Chiou, C.K. Liu, Dye wastewater treated by Fenton process with ferrous ions electrolytically generated from iron-containing sludge, Journal of Hazardous Materials, 144 (2007) 570-576.
[17] R. Liu, H.M. Chiu, C.S. Shiau, R.Y.L. Yeh, Y.T. Hung, Degradation and sludge production of textile dyes by Fenton and photo-Fenton processes, Dyes and Pigments, 73 (2007) 1-6.
[18] C.H. Chiou, C.Y. Wu, R.S. Juang, Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process, Chemical Engineering Journal, 139 (2008) 322-329.
[19] B.P. Cho, L.R. Blankenship, J.D. Moody, D.R. Doerge, F.A. Beland, S.J. Culp, Synthesis and Characterization of 4′-Amino and 4′-Nitro Derivatives of 4-N,N-Dimethylaminotriphenylmethane as Precursors for a Proximate Malachite Green Metabolite, Tetrahedron, 56 (2000) 7379-7388.
[20] N.A. Littlefield, B.N. Blackwell, C.C. Hewitt, D.W. Gaylor, Chronic toxicity and carcinogenicity studies of gentian violet in mice, Fundamental and Applied Toxicology, 5 (1985) 902-912.
[21] M.S. Baptista, G.L. Indig, Effect of BSA Binding on Photophysical and Photochemical Properties of Triarylmethane Dyes, The Journal of Physical Chemistry B, 102 (1998) 4678-4688.
[22] T. Gessner, U. Mayer, Triarylmethane and Diarylmethane Dyes, in: Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2000.
[23] C.C. Chen, H.J. Fan, J.L. Jan, Degradation Pathways and Efficiencies of Acid Blue 1 by Photocatalytic Reaction with ZnO Nanopowder, The Journal of Physical Chemistry C, 112 (2008) 11962-11972.
[24] C.C. Chen, C.S. Lu, F.D. Mai, C.-S. Weng, Photooxidative N-de-ethylation of anionic triarylmethane dye (sulfan blue) in titanium dioxide dispersions under UV irradiation, Journal of Hazardous Materials, 137 (2006) 1600-1607.
[25] C.C. Chen, Degradation pathways of ethyl violet by photocatalytic reaction with ZnO dispersions, Journal of Molecular Catalysis A: Chemical, 264 (2007) 82-92.
[26] C.C. Chen, C.S. Lu, Y.C. Chung, Photocatalytic degradation of ethyl violet in aqueous solution mediated by TiO2 suspensions, Journal of Photochemistry and Photobiology A: Chemistry, 181 (2006) 120-125.
[27] W.W. Lee, W.H. Chung, C.S. Lu, W.Y. Lin, C.C. Chen, A Study on the Degradation Efficiency and Mechanisms of Ethyl Violet by HPLC-PDA-ESI-MS and GC-MS, Separation and Purification Technology.
[28] W. Zhu, Z. Yang, L. Wang, Application of ferrous-hydrogen peroxide for the treatment of H-acid manufacturing process wastewater, Water Research, 30 (1996) 2949-2954.
[29] W. Chu, Dye Removal from Textile Dye Wastewater Using Recycled Alum Sludge, Water Research, 35 (2001) 3147-3152.
[30] H. Selcuk, Decolorization and detoxification of textile wastewater by ozonation and coagulation processes, Dyes and Pigments, 64 (2005) 217-222.
[31] F.H. Hussein, hotochemical Treatments of Textile Industries Wastewater, Advances in Treating Textile Effluent., In P. J. Hauser (Eds.) Available, (2011).
[32] S.H. Lin, M.L. Chen, Treatment of textile wastewater by chemical methods for reuse, Water Research, 31 (1997) 868-876.
[33] T.L. Hu, C. Lin, K.Y. Chiang, Simulations of organic carbon transformation in dye wastewater and treatment suggestions, Advances in Environmental Research, 8 (2004) 493-500.
[34] 行政院環境保護署,水汙染防治第七條第二項, in, 2011.
[35] H. An, Y. Qian, X. Gu, W.Z. Tang, Biological treatment of dye wastewaters using an anaerobic-oxic system, Chemosphere, 33 (1996) 2533-2542.
[36] C.Y. Chen, J.T. Kuo, C.Y. Cheng, Y.T. Huang, I.H. Ho, Y.C. Chung, Biological decolorization of dye solution containing malachite green by Pandoraea pulmonicola YC32 using a batch and continuous system, Journal of Hazardous Materials, 172 (2009) 1439-1445.
[37] G.M. Walker, L.R. Weatherley, Adsorption of acid dyes on to granular activated carbon in fixed beds, Water Research, 31 (1997) 2093-2101.
[38] C. Namasivayam, D.J.S.E. Arasi, Removal of congo red from wastewater by adsorption onto waste red mud, Chemosphere, 34 (1997) 401-417.
[39] J. Wang, C.P. Huang, H.E. Allen, D.K. Cha, D.W. Kim, Adsorption Characteristics of Dye onto Sludge Particulates, Journal of Colloid and Interface Science, 208 (1998) 518-528.
[40] A. Mittal, V. Gajbe, J. Mittal, Removal and recovery of hazardous triphenylmethane dye, Methyl Violet through adsorption over granulated waste materials, Journal of Hazardous Materials, 150 (2008) 364-375.
[41] A. Kunamneni, I. Ghazi, S. Camarero, A. Ballesteros, F.J. Plou, M. Alcalde, Decolorization of synthetic dyes by laccase immobilized on epoxy-activated carriers, Process Biochemistry, 43 (2008) 169-178.
[42] M. Klavarioti, D. Mantzavinos, D. Kassinos, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes, Environment International, 35 (2009) 402-417.
[43] I. Gültekin, N.H. Ince, Degradation of aryl-azo-naphthol dyes by ultrasound, ozone and their combination: Effect of α-substituents, Ultrasonics Sonochemistry, 13 (2006) 208-214.
[44] 甘佳欣, 以次氯酸內去除染整廢水色度之反應動力學研究, (1999).
[45] S. Esplugas, J. Giménez, S. Contreras, E. Pascual, M. Rodrı́guez, Comparison of different advanced oxidation processes for phenol degradation, Water Research, 36 (2002) 1034-1042.
[46] M. Anbar, Photolysis of hydrogen peroxide at high light intensities in aqueous solutions enriched in O18, Transactions of the Faraday Society, 57 (1961) 971-982.
[47] W. Song, V. Ravindran, M. Pirbazari, Process optimization using a kinetic model for the ultraviolet radiation-hydrogen peroxide decomposition of natural and synthetic organic compounds in groundwater, Chemical Engineering Science, 63 (2008) 3249-3270.
[48] 蘇弘毅.洪錫勳, UV/H2O2技術在工業上之應用, 工業污染防治, 14 (1995).
[49] 曾迪華.莊連春.郭家倫.楊志堅, UV/H2O2氧化程序於水處理之應用, 工業污染防治, 14 (1995) 205-247.
[50] F.H.a.J. Weiss, The Catalytic Decomposition of Hydrogen Peroxide by Iron Salts, rspa.royalsocietypublishing.org, 134 (1934) 332-351.
[51] W.G. Kuo, Decolorizing dye wastewater with Fenton's reagent, Water Research, 26 (1992) 881-886.
[52] S. Meriç, D. Kaptan, T. Ölmez, Color and COD removal from wastewater containing Reactive Black 5 using Fenton’s oxidation process, Chemosphere, 54 (2004) 435-441.
[53] J.J. Pignatello, Dark and photoassisted iron(3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide, Environmental Science & Technology, 26 (1992) 944-951.
[54] P.K. Malik, Oxidation of Safranine T in Aqueous Solution Using Fenton's Reagent:  Involvement of an Fe(III) Chelate in the Catalytic Hydrogen Peroxide Oxidation of Safranine T, The Journal of Physical Chemistry A, 108 (2004) 2675-2681.
[55] 秦興國, FENTON法應用於處理染料廢水之研究, 專題謗告, (2003).
[56] F.A. Alshamsi, A.S. Albadwawi, M.M. Alnuaimi, M.A. Rauf, S.S. Ashraf, Comparative efficiencies of the degradation of Crystal Violet using UV/hydrogen peroxide and Fenton's reagent, Dyes and Pigments, 74 (2007) 283-287.
[57] S.F. Kang, H.M. Chang, Coagulation of textile secondary effluents with Fenton's reagent, Water Science and Technology, 36 (1997) 215-222.
[58] J. Fernandez, J. Bandara, A. Lopez, P. Buffat, J. Kiwi, Photoassisted Fenton Degradation of Nonbiodegradable Azo Dye (Orange II) in Fe-Free Solutions Mediated by Cation Transfer Membranes, Langmuir, 15 (1998) 185-192.
[59] J.H. Sun, S.P. Sun, G.L. Wang, L.P. Qiao, Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process, Dyes and Pigments, 74 (2007) 647-652.
[60] J. Chen, L. Zhu, Heterogeneous UV-Fenton catalytic degradation of dyestuff in water with hydroxyl-Fe pillared bentonite, Catalysis Today, 126 (2007) 463-470.
[61] J.H. Sun, S.P. Sun, J.Y. Sun, R.X. Sun, L.P. Qiao, H.Q. Guo, M.H. Fan, Degradation of azo dye Acid black 1 using low concentration iron of Fenton process facilitated by ultrasonic irradiation, Ultrasonics Sonochemistry, 14 (2007) 761-766.
[62] M.E. Balmer, B. Sulzberger, Atrazine Degradation in Irradiated Iron/Oxalate Systems:  Effects of pH and Oxalate, Environmental Science & Technology, 33 (1999) 2418-2424.
[63] L. Carol Eunmi, R. Jane Louise, G. Gregory William, Evolution of Physiological Tolerance and Performance During Freshwater Invasions1, in, The Society for Integrative and Comparative Biology, 2003.
[64] J. Jeong, K. Sekiguchi, K. Sakamoto, Photochemical and photocatalytic degradation of gaseous toluene using short-wavelength UV irradiation with TiO2 catalyst: comparison of three UV sources, Chemosphere, 57 (2004) 663-671.
[65] A. Mohey El-Dein, J.A. Libra, U. Wiesmann, Mechanism and kinetic model for the decolorization of the azo dye Reactive Black 5 by hydrogen peroxide and UV radiation, Chemosphere, 52 (2003) 1069-1077.
[66] N.H. Ince, “Critical” effect of hydrogen peroxide in photochemical dye degradation, Water Research, 33 (1999) 1080-1084.
[67] İ. Arslan, I.A. Balcioǧlu, D.W. Bahnemann, Advanced chemical oxidation of reactive dyes in simulated dyehouse effluents by ferrioxalate-Fenton/UV-A and TiO2/UV-A processes, Dyes and Pigments, 47 (2000) 207-218.
[68] C.E. Bali U, Sengül F., Photochemical degradation and mineralization of phenol: a comparative study, J Environ Sci Health A Tox Hazard Subst Environ Eng., 38 (2003) 2259-2275.
[69] V. Kavitha, K. Palanivelu, The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol, Chemosphere, 55 (2004) 1235-1243.
[70] R.J.U. Watts, Matthew D.; Rauch, Paul A.; Leung, Solomon W., Treatment of Pentachlorophenol-Contaminated Soils Using Fenton's Reagent, Hazardous Waste and Hazardous Materials, 7 (1990) 335-345.
[71] B.W.W. Tyre, R.J., Pullman ; Miller, G.C., Treatment of four biorefractory contaminants in soils using catalyzed hydrogen peroxide, Journal of Environmental Quality, 1991.
[72] R. Watts, J,Udell.M.D and Monsen,R,M, Use of iron minernals in optimizing the peroxide treatment of contaminated soils Waste Environ.Res 65 (1993) 839-844.
[73] R. watts, J,Daniel,R,H.,Alexander,P.J.and Amy, L,T., A Foundation for the Risk-Based Treatment of Gasoline-Contaminated Soils Using Modified Fenton's Reaction, Journal of Hazardous Materials, B76 (2000) 73-89.
[74] P.H. Chen, and R.J.Watts, Determination of rates of hydroxy1 radical generation in mineral-catelyzed Fenton-like oxidationm journal of Chinese Institute of Environmental Eengineering 10 (2000) 201-208.
[75] H.Y.H. Hsueh C .L., Wang C.C.,Chen C.Y., Degradation of azo dyes using low oncentration of Fenton and Fenton-like system, Chemosphere, 58 (2005) 1409.
[76] M.a. Swaminathan, Decolourisation of reactive orang 4 by Fenton and photo-Fenton oxidation techonlogy, Dyes and Pigments, 63 (2004) 315.
[77] K.a. Palanivelu, The role of ferrous ion in Fenton and processes for the degradation of phenol, Chemosphere, 155 (2004) 1235.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top