跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/03 18:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王永年
研究生(外文):Wang, Yung-nian
論文名稱:駕駛者平直路段車速判斷績效與車內聲音之影響
論文名稱(外文):Drivers' speed estimation performance on plane straight highway and in-car sound influences
指導教授:王明揚王明揚引用關係
學位類別:博士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
論文頁數:77
中文關鍵詞:車內噪音車速判斷車速改變察覺音樂道路設計車輛設計安全
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
駕駛速度控制是交通安全的重要項目,高車速可能導致意外發生機率與後果嚴重性的提高。雖然駕駛人可藉儀表板與先進車內輔助系統瞭解駕駛速度,感官速度知覺還是不可或缺,正確的感知本身車速對於安全是相當重要的,而同樣重要的是能夠在車速改變的時候即時察覺,這也正是本研究的目的。本研究共分三個部份,第一個部份嘗試瞭解駕駛者以車內聲音判斷固定行車速度的績效,第二部分試圖探究駕駛者在車速改變時發現時間與正確性的績效,第三部分則在車內噪音外,加上音樂來瞭解與速度無關的不同節奏的聲音線索,對於車速判斷的影響。研究皆以真實道路錄製聲音配上模擬軟體畫面,在實驗室中進行。
結果顯示與車速相關的車內噪音,主要來自於低於600赫茲的低頻噪音,而駕駛者傾向在高速駕駛下嚴重低估本身車速,若能保留低頻噪音即可在減低車內噪音不舒適性的同時,保持車速判斷績效。而駕駛者對於車速改變的判斷績效並不好,只有52.36%的受試者察覺到了車速改變,平均需要8.75秒來察覺改變,但若能提供駕駛者清晰的聲音線索,尤其是包含路面震動聲音,就可以有效提升績效。若有音樂做為背景聲音的情況下,音樂的節奏會影響駕駛者的速度判斷績效,越快的節奏會讓駕駛者認為本身開車速度越快。而音樂的音量則對於速度判斷沒有直接影響,其作用在於讓駕駛者更清楚地聽到音樂節奏的訊息,而造成速度判斷績效的改變。因此本研究建議車輛設計者不應追求車內極致安靜,應保有一定程度的噪音,而道路設計者應在容易導致非自主加速路段,使路面稍有不平,以降低車速並提供駕駛者更豐富的速度線索。本研究的結果可以應用在車輛的防音設計上,讓安全與舒適達到平衡,此外,也可提供模擬器與駕駛遊戲設計者參考,製作出更符合真實駕駛感覺的駕駛平台。

Failure to control driving speed puts drivers and others in a hazardous situation. In addition to speedometers and other advanced technologies, drivers can also determine their driving speed through sensory channels. Correct estimation of driving speed plays important roles on road safety. It is also important to sense changes in speed. In-car sound is an auxiliary cue often neglected. There are three parts in this study. First was to explore human speed perception through in-car sound and find useful sound elements by separating sounds into different frequencies. Second was to combine simulated windscreen views and real in-car sounds to examine eligible drivers’ performance in the perception of speed changes. The last was to explore how music influence speed perception by having in-car noise as cues. The results of the first part showed a serious underestimation at high speeds. Quiet cabin leads to speed underestimation. However, weakening intensity of frequencies below 600 Hz which descended as speed increased (against overall pattern) helped improve estimation performance especially at higher speeds which is most underestimated with normal sound. The results of the second part showed that drivers were poor at detecting speed changes. The results showed that only 52.36% of the participants noticed speed changes, and they required an average of 8.75 seconds to respond. Providing in-car sounds, especially clear, vibrating noises, can improve driver performance. And the results of the third part showed that music tempo influenced drivers’ speed perception by providing more temporal information and thus make speed perception faster. And the volume of music has no direct relationship with speed perception and works as a mediating factor between music tempo and speed perception. We suggest that vehicle designers should maintain a minimum level of in-car sound, and road designers should provide auditory cues on certain road sections to improve road safety. This study can contribute to soundproofing design in vehicle industry by suggesting that specific sound frequencies be preserved while irrelevant ones are weakened. In this way driving safety and vehicle quietness could be achieved at the same time.
摘要 i
ABSTRACT ii
致謝 iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES vii
CHAPTER 1 INTRODUCTION 1
1.1. Background 1
1.2. Objectives 3
1.3. Research framework 4
CHAPTER 2 LITERATURE REVIEW 7
2.1. Driving speed and road safety 7
2.2. Speed estimation related researches 13
2.2.1. Vision in speed estimation 14
2.2.2. Auditory perception in speed estimation 17
2.3. Noise reduction in Vehicle design 19
2.4. Noise in the car 22
2.5. Music and driving 23
2.6. Method to measure speed estimation 24
2.6.1. Experiment design method 24
2.6.2. Indexes to measure speed perception 26
CHAPTER 3 SOUND RECORDING AND ANALYSIS 27
3.1. Instrument and placement 27
3.2. Anticipated sounds recorded on road 29
3.3. Recording procedure 29
3.4. Sound analysis 31
3.5. Result: sound attributes under constant speed 32
3.5.1. Overall intensity 32
3.5.2. Intensity of nine chosen frequencies 33
3.6. Result: sound attributes under acceleration/deceleration 35
3.7. Brief discussion and conclusion 37
CHAPTER 4 METHODOLOGY OF EXPERIMENTS 39
4.1. Constant speed estimation 39
4.1.1. Experimental design 39
4.1.2. Apparatus and experimental environment setting 40
4.1.3. Participants 42
4.1.4. Procedure 42
4.1.5. Statistic for analysis 43
4.2. Speed change detection 43
4.2.1. Experimental design 43
4.2.2. Apparatus 44
4.2.3. Procedures 46
4.2.4. Measures and statistics for analysis 46
4.3. Music masking effect on speed estimation performance 47
4.3.1. Participants 48
4.3.2. Materials 48
4.3.3. Design and test presentation 50
CHAPTER 5 RESULTS 51
5.1. Constant speed estimation performance 51
5.2. Speed change detection performance 52
5.2.1. Speed change detection with normal sound 53
5.2.2. Speed change detection with temporal vibration noise 54
5.3. Speed estimation performance with music 55
CHAPTER 6 DISCUSSION AND CONCLUSION 58
6.1. In-car noise analysis 58
6.2. Constant speed estimation 59
6.3. Speed change detection 61
6.4. Speed estimation with music 63
6.5. General discussion 67
6.6. Conclusion 68
6.7. Future work 69
REFERENCES 71


Atkinson, G., Wilson, D., & Eubank, M., 2004. Effects of music on work-related distribution during a cycling time trial. International Journal of Sport Medicine, 25, 611-615.
Bettella, M., Harrison, M. F., & Sharp, R. S., 2002. Investigation of automotive creep groan noise with a distributed-source excitation technique. Journal of Sound and Vibration, 255 (3), 531-547.
Bowie, N. N., & Waltz, M., 1994. Data analysis of the speed-related crash issue. Auto and Traffic Safety, 1(2), 31-38.
Brodsky, W., 2002. The effects of music tempo on simulated driving performance and vehicular control. Transportation Research Part F: Psychology and Behaviour, 4, 219-241.
Brookhuis, K. & Dick de Waard, 1999. Limiting speed, towards an intelligent speed adapter (ISA). Transportation research part F: Psychology and Behaviour, 2, 81-90.
Brooks, J. O., Crisler, M. C., Klein, N., Goodenough, R., & Beeco, R.W., 2011. Speed choice and driving performance in simulated foggy conditions. Accident Analysis and Prevention, 43, 698-705.
Button, D. C., Behm, D. G., Holmes, M., & MacKinnon, S. N., 2004. Noise and muscle contraction affecting vigilance task performance. Occupational Ergonomics, 4, 751-756.
Casey, S. M., & Lund, A. K., 1987. Three field studies of driver speed adaptation. Human Factors, 29(5), 541-550.
Cavallo, V., Colomb, M., & Dore, J., 2000. The overestimation of headways in fog. Recherche Transports Securite, 66, 81-99.
Chiarello, R., & Nackenhorst, U., 2010. A tire model for individual car indoor noise simulation. Proceedings in Applied Mathematics and Mechanics, 10(1), 147-148.
Cirillo, J. A., 1968. Interstate system accident research studyⅡ, interim reportⅡ. Public Roads, 35(3), 1-7.
Clarke, D. D., Ward, P., & Jones, J., 1998. Overtaking road accidents: differences in manoeuvre as a function of driver age. Accident Analysis and Prevention, 30(4), 445–467.
DeNora, T., 2000. Music in everyday life. Cambridge, UK: Cambridge University Press.
Elander, J., West, R., & French, D., 1993. Behavioral correlates of individual differences in road-traffic crash risk: An examination of methods and findings. Psychological Bulletin, 113, 279–294.
Evans, L., 1970a. Speed estimation from a moving automobile. Ergonomics, 13, 219-230.
Evans, L., 1970b. Automobile speed estimation using movie-film simulation. Ergonomics, 13, 231-235.
Ewing, R., Kooshian, C., & White, M., 1998. Traffic calming state-of-the-art [Draft final report]. Federal Highway Administration, Washington, DC.
Fildes, B. N., & Triggs, T. J., 1985. Effect of changes in curve geometry at magnitude estimates of road like perspective curvature. Perception and Psychophysics, 37, 218-224.
Groeger, J. A., Carsten, O. M. J, Blana, E., & Jamson, A. H., 1999. Speed and distance estimation under simulated conditions. Vision in Vehicles VII. Elsevier Science, Amsterdam.
Griffin, L. I., & Reinhardt, R. N., 1996. A review of two innovative pavement patterns that have been developed to reduce traffic speeds and crashes. AAA Foundation for Traffic Safety, Washington, DC.
Guedry, F. E., 1976. Psychophysics of vestibular sensation. H. H. Kronhuber (ED.), Handbook of Sensory Physiology. Vol. 6. Berlin: Springer, pp.154.
Guerin, B., 1994. What do people think about the risks of driving implications for traffic safety intervention. Journal of Applied Social Psychology, 24(11), 994-1021.
Hargreaves, D. J., & North, A. C., 1999. Music and driving game performance. Scandinavian Journal of Psychology, 40, 285-292.
Hawkins, R. K., 1988. Motorway Traffic Behaviours in Reduced Visibility Conditions, Vision in Vehicle Ⅱ, Elsevier, Amsterdam.
Hellier, E., Naweed, A., Walker, G., Husband, P., & Edworthy, J., 2011. The influence of auditory feedback on speed choice, violations and comfort in a driving simulation game. Transportation Research Part F: Psychology and Behaviour, 14(6), 591-599.
Hoedemaeker, M., & Brookhuis, K. A., 1998. Behavioural adaptation to driving with an adaptive cruise control (ACC). Transportation Research Part F: Psychology and Behaviour, 1(2), 95-106.
Horswill, M. S., & Coster, M. E., 2002. The effect of vehicle characteristics on drivers’ risk-taking behaviour. Ergonomics, 4, 85-104.
Hoshino, H., Terazawa, N., Kozawa, Y., & Katoh, H., 1995. Balance evaluation of passenger car interior noise e evaluation of sound components of passenger car interior noise. JSAE Review, 16(3), 326.
Hjälmdahl, M., & Várhelyi, A., 2004. Speed regulation by in-car accelerator pedal effects on driver behaviors. Transportation Research Part F: Psychology and Behaviour, 7, 77-94.
Kallinen, K., 2002. Reading news from a pocket computer in a distracting environment: Effects of tempo of background music. Computers in Human Behavior, 18, 537-551.
Kim, S., & Park, Y., 2001. On-line fundamental frequency tracking method for harmnic signal and application to ANC. Journal of Sound and Vibration, 241(4), 681-691.
Kima, B. S., Kimb, G. K., & Lee, T. K., 2007. The identification of tyre induced vehicle next term interior previous term noise. Applied Acoustics, 68(1), 134-156.
Konz, S., & McDougal, D., 1968. The effect of background music on the control activity of an automobile driver. Human Factors, 10, 233-244.
Kujala, T., Shtyrov, Y., Winkler, I., Saher, M., Tervaniemi, M., & Sallinen, M., 2004. Long-term exposure to noise impairs cortical sound processing and attention control. Psychophysiology, 41, 875-881.
Larsen, L., 2004. Methods of multidisciplinary in-depth analysis of road traffic accidents. Journal of Hazardous Materials, 111(1-3), 115-122.
Lee, H. H., & Lee, S.K., 2009. Objective evaluation of interior noise booming in a passenger car based on sound metrics and artificial neural networks. Applied Ergonomics, 405, 860-869.
Lercher, P., Evans, G. W., & Meis, M., 2003. Ambient noise and cognitive processes among primary school children. Environment and Behavior, 35, 725-735.
Li, K., & Tanaka, T., 2001. Development of an adaptive control simulation system for vehicle exhaust noise reduction. JSAE Review, 22(2), 157-162.
Li, W., Gu, F., Ball, A. D., Leung, A. Y. Y., & Phipps, C. E., 2001. A study of the noise from diesel engines using the independent component analysis. Mechanical Systems and Signal Processing, 156, 1165-1184.
Matthews, G., Quinn, C. E. J., & Mitchell, K. J., 1998. Rock music, task-induced stress and simulated driving performance. G. B. Grayson (ED.), Behavioural Research in Road Safety VIII, Transport Research Laboratory, Crowthorne, UK. pp. 20–32.
Miura, T., 1986. Coping with situational demand: A study of eye movements and peripheral vision performance. Vision in vehicles, Elsevier, Amsterdam.
Munden, J. M., 1967. The relation between a driver ‘s speed and his accident rate. Report LR88. Transport and road research laboratory, Crowthrone, England.
Nilsson, G., 1990. Reduction of the 110 km/h speed limit to 90 km/h during summer 1989. Effect on personal injury accidents, injured and speeds. Report. No. VTI-358, National Swedish Road & Traffic Research Institute Linkoeping Sweden.
Olson, P. L., 1996. Forensic Aspects of Driver Perception and Response Chapter 2-3. Lawyers & Judges Publishing Company. Inc..
Owens, D. A., Wood, J., & Carberry, T., 2002. Perceived speed and driving behavior in foggy conditions [Abstract]. Journal of Vision, 27, 631.
Parker Jr., M. R., 1997. Effects of raising and lowering speed limits on selected roadway sections. Report No. FHWA-RD-92-084, Federal Highway Administration, Washington, DC.
Perrillo, K. V., 1997. Effectiveness of speed trailer on low-speed urban roadway. Master thesis, Texas A&M University, College Station, TX.
Reymond, G., & Kemeny, A., 2000. Motion cueing in Renaut driving simulator. Vehicle System Dynamics, 34, 249-259.
Recarte, M. A., & Nunes, L., 2002. Mental Load and Loss of Control Over Speed in Real Driving, Toward a Theory of Attentional Speed Control. Transportation Research Part F: Psychology and Behaviour, 5, 111-122.
Richter, E. D., Barach, P., Friedman, L., Krikler, S., & Israeli, A., 2004. Raised speed limits, speed spillover, case-fatality rates, and road deaths in Israel: A 5-year follow-up. American Journal of Public Health, 94(4), 568-574.
Salvatore, S., 1968. The estimation of vehicle velocity as a function of visual stimulation. Human Factors, 10, 27-32.
Sanders, M. S., & McCormick E. J., 1992. Human Factors in Engineering and Design (7th Ed.) McGraw-Hill international editions.
Shinar, D., McDowell, E. D., & Rockwell, T. H., 1974. Improving driver performance on curves in rural highways through perceptual changes. Interim Report Project No. EES 428. Columbus: Ohio State University, Department of Industrial and Systems Engineering.
Sivak, M., 1996. The information that drivers use: is it indeed 90% visual? Perception, 25(9), 1081-1089.
Sloboda, J. A., 1999. Everyday uses of music listening: a preliminary study. In Suk Won Yi (Ed.). Music, mind, and science. pp. 354-369.
Sluster, J., Coffman, Z., & Warren, D., 1998. Synthesis of safety research related to speed and speed limit. Publication No. FHWA-RD-98-154, Federal Highway Administration, Washington, DC.
Snowden, R. J., Stimpson, N., & Ruddle, R. A., 1998. Speed Perception Fogs Up as Visibility drop. Nature, 329(6), 675.
Soloman, D., 1964. Accidents on main rural highways related to speed, driver and vehicle. Federal Highway Administration, Washington, DC..
Spinney, L., 1997. Pump down the volume, New Scientists, 155, 22.
Stanton, N. A., & Young, M. S., 1998. Vehicle automation and driving performance. Ergonomics, 41(7), 1014-1028.
Stevens, S. S., 1970. Neural events and the psychophysical law. Science, 170, 1043-1050.
Streff, F. M., Kostyniuk, L. P., & Christoff, C., 1995. Effects of dorne radar and police enforcement on travel speeds: Test on a 65 MPH freeway and 55 MPH construction. Report No. UMTRI-95-22, University of Michigan Transportation Research Institute. Ann Arbor, MI.
Summala, H., Nieminen, T., & Punto, M., 1996. Maintaining lane position with peripheral vision during in-vehicle tasks. Human Factors, 38, 442-451.
Taylor, S. E., & Brown, J. D., 1988. Illusions of well-being: a social psychological perspective on mental health. Psychological Bulletin, 103, 193-210.
Teed, L., & Lund, A. K., 1991. The effect of laser speed measuring devices on speed limit law enforcement in Charleston, S.C. Insurance Institute for Highway Safety, Arlington, VA.
Viola, C., Michèle, C., & Jocelyne D., 2000. The overestimation of headways in fog. Recherche Transports Securite, 2000(66), 81-99.
Walker, G. H., Stanton, N. A., & Young, M. S., 2006. The ironies of vehicle feedback in car design. Ergonomics, 49, 161-179.
Walton, D., 1999. Examining the self-enhancement bias: professional truck drivers’ perceptions of speed, safety, skill and consideration. Transportation research part F: Psychology and Behaviour, 2, 91-113.
Wang, Y. N., & Wang, M. Y., 2006. In-car sound intensity and frequency change under different driving speed. Paper session presented at 36th Conference on Computers & Industrial Engineering, Taipei, Taiwan.
Wang, Y. N., & Wang, M. Y., 2012. In-car sound analysis and driving speed estimation using sounds with different frequencies as cues. International Journal of Industrial Ergonomics, 42(1), 34-40.
West, L. B., & Dunn, J. W., 1971. Accidents, speed deviation and speed limits. Traffic Engineering, 41(10), 52-55.
Wickens, D. C., & Holland, G. J., 1999. Engineering Psychology and Human Performance. (3rd Ed.), Prentice Hall.
Wierwille, W. W., 1995. Overview of research on driver drowsiness definition and driver drowsiness detection. Proceedings of the fourteenth international technical conference on enhanced safety of vehicles. Munich, Germany. pp. 426-428.
Xu, Z. S., & Yu, S. P., 1994. Human Factors-Design for Human, Machine, Environment. Chapter 13. Taipei: Tsang Hai Book Publishing Co..
Zwahlen, H. T., Adams Jr., C. C., & DeBald, D. P., 1988. Safety aspects of CRT touch panel controls in automobiles. In A. G. Gale, M. H., Freeman, C. M., Haslegrave, P., Smith, S. P., Taylor (Eds.), Vision in Vehicles-II, Elsevier, Amsterdam.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top