跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/17 02:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:辛宛珉
研究生(外文):Hsin, Wan-Min
論文名稱:半導體廠黃光區派工紫式決策架構
論文名稱(外文):UNISON Framework for Dispatching Problem of Photolithography Area in Semiconductor Manufacturing
指導教授:簡禎富簡禎富引用關係
指導教授(外文):Chien, Chen-Fu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:69
中文關鍵詞:黃光區派工決策分析半導體製造紫式決策分析架構多目標遺傳演算法
外文關鍵詞:PhotolithographyDispatchingDecision AnalysisSemiconductor ManufacturingUNISON Decision FrameworkMultiobjective Genetic Algoruthm
相關次數:
  • 被引用被引用:1
  • 點閱點閱:360
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
黃光區域機台的微影製程常是系統瓶頸所在,其機台的派工對於協調全廠其它區域與平衡工作負荷,有著極重大的影響。半導體產業的資本額主要投資集中於機台設備,產能運用成為維持競爭力最主要的關鍵因素。為了有效地運用產能,制定合適的生產規劃與排程派工在半導體產業中是顯著的影響因素之一。除了成本的壓力外,由於競爭日益激烈,半導體產業將更加重視客戶的滿意度。高達交率成為重要的競爭因素之一,派工與排程策略成為增加競爭優勢的關鍵。然而過去相關研究缺乏依據現場實際狀況、動態決定最適派工的決策機制,且由於半導體產業的派工問題複雜且考量因素眾多,單一法則或單一目標的派工模式已不適用,轉以考量多個目標同時進行規劃已成為當前所需探究的課題。本研究考慮黃光區域機台派工,發展黃光區域機台派工決策模型之決策分析架構,利用系統化的多目標技術規劃、分析並求解半導體產業面臨的黃光區域機台派工問題,以最佳派工策略來達到半導體廠提升產能利用、降低人力成本、滿足客戶需求之目的。並以半導體產業為實證對象,實證結果顯示較案例公司的利用經驗法則派工為佳。本研究結果可以幫助企業擬定最適派工策略來達成實務上所重視之生產目標,提升企業關注之生產指標水準,達到企業理想的目標,提升整體之競爭力。
Photolithography machines are the bottleneck of a wafer fab, its dispatching has a significant effect on loading balance of other area. Effectively and efficiently utilize the bottleneck is important to improve tool productivity and maintain the competitive advantage of operation efficiency, production management in the photolithography has become an important issue of semiconductor manufacturing. In addition, customer satisfaction has become an important issue in the semiconductor industry due to the increasing competition. High hit rate become one of the important competitive factors, scheduling and dispatching strategy are critical for increasing competitive advantage. Thus, this study aims to construct a decision framework for dispatching decision model in photolithography area. The proposed framework based on multi objective genetic algoruthm approach to plan, analysis and slove dispatching problem in photolithography area which derive the best strategy to enhance the capacity utitlize, reduce labor cost and sutusfy the customers need. Empirical study has been done to sort the strategy to fufill the operation target and improve predormance for overall competeiveness. The results have proved the validity of the proposed framework.
目錄 I
圖目錄 III
表目錄 V
第一章 緒論 1
1.1 研究背景、動機與重要性 1
1.2 研究目的與研究範圍 2
1.3 論文結構 3
第二章 文獻回顧 5
2.1 黃光區特性 5
2.2 黃光區排程與派工 7
2.3 紫式決策分析架構 12
2.4 遺傳演算法 12
2.5 多目標遺傳演算法 14
2.6 文獻回顧小結 17
第三章 紫式多目標黃光區機台派工決策架構 18
3.1 瞭解問題與定義問題 19
3.2 界定利基 22
3.3 架構影響關係 26
3.4 客觀描述感受 34
3.5 綜合判斷與主觀衡量 36
3.6 權衡與決策 37
第四章 紫式多目標黃光區機台派工決策實證研究 38
4.1 瞭解問題與定義問題 38
4.2 界定利基 40
4.3 架構影響關係 51
4.4 客觀描述感受 53
4.5 綜合判斷與主觀衡量 54
4.6 權衡與決策 56
4.7 結果與討論 63
第五章 結論 64
參考文獻 65


簡禎富(2005),決策分析與管理,雙葉書廊,台北。
林昇甫、徐永吉(2009),遺傳演算法及其應用,五南書局,台北。
Akcali, E., Nemoto, K., and Uzoy, R., (2001), “Cycle-Time Improvements for Photolithography Process in Semiconductor Manufacturing,” IEEE Transactions on Semiconductor Manufacturing, Vol. 14, No. 1, pp. 48-56.
Arisha, A. and Young, P., (2004), “Intelligent simulation-based lot scheduling of photolithography toolsets in a wafer fabrication facility,” Proceedings of the 2004 Winter Simulation Conference, Washington, DC, December 5-8.
Bhandari, D., Murthy, C. A., and Pal, S. K., (1996), “Genetic Algorithm with elitist model and its convergence,” International Journal of Pattern Recognition and Artificial Intelligence, Vol.10, No. 6, pp. 731-747.
Cakici, E. and Mason, S. J., (2007), “Parallel machine scheduling subject to auxiliary resource constraints,” Production Planning &; Control: The Management of Operations, Vol. 18, No. 3, pp. 217-225.
Charnes, A., Cooper, W. W., and Ferguson, R. O., (1995), “Optimal estimation of executive compensation by linear programming,” Management Science, Vol. 1, No. 2, pp. 138-151.
Chern, C. C. and Liu, Y. L., (2003), “Family-based scheduling rules of a sequence-dependent wafer fabrication system,” IEEE Transactions on Semiconductor Manufacturing, Vol. 16, No. 1, pp. 15-25.
Chiou, C. W. and Wu, M. C., (2009), “A GA-Tabu algorithm for scheduling in-line steppers in low-yield scenarios,” Expert Systems with Applications, Vol.36, No. 9, pp. 11925-11933.
Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., (2002), “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transaction on Evolutionary Computation, Vol. 6, No. 2, pp. 182-197.
Duwayri, Z., Mollahasemi, M., Nazzal, D. and Rabadi, G., (2006), “Scheduling setup changes at bottleneck workstations in semiconductor manufacturing,” Production Planning and Control, Vol. 17, No. 7, pp. 717-727.
Edenfeld, D., Kahng, A. B., Rodgers, M., and Zorian, Y., (2004), “2003 technology roadmap for semiconductors,” Computer, Vol. 37, No. 1, pp. 47-56.
Erkoc, M. and Wu, S. D., (2005), "Managing High-Tech Capacity Expansion via Reservation Contracts," Production and Operation Management, Vol. 14, No.2, pp. 232-251.
Gen, M. and Cheng, R. (1997), Genetic Algorithms and Engineering Design, John Wiley &; Sons, New York.
Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Boston.
Goldratt, E. and Cox, J., (1986), The Goal – A Process of Ongoing Improvement, North River Press, New York.
Kim, I. Y. and de Weck, O. L., (2005), “Adaptive weighted-sum method for bi-objective optimization: Pareto front generation,” Structural and Multidisciplinary Optimization, Vol. 29, No. 2, pp. 149-158.
Kim, Y. D. (1990), “A Comparison of Dispatching Rules for Job Shop with Multiple Identical Job and Alternative Routings,” International Journal of Production Research, Vol. 28, No. 5, pp. 953-962.
Kim, Y. D., Lee, D. H., Kim, J. U., and Roh, H. K., (1998a), “A simulation study on lot release control, mask schedulingm, and batch scheduling in semi-conductor wafer fabrication facilities,” Journal of Manufacturing Systems, Vol. 17, No. 2, pp. 107-117.
Kim, Y. D., Kim, J. U., Lim, S. K., and Jun, H.B., (1998b), “Due-date based scheduling and control policies in a multiproduct semiconductor wafer fabrication facility,” IEEE Transactions on Semiconductor Manufacturing, Vol. 11, No. 1, pp. 155-164.
Knoak, A., Coit, D. W., and Smith, A. E., (2006), “Multi-Objective Optimization Using Genetic Algorithm: A Toturial,” Reliability Engineering &; System Safety, Vol. 91, No.9, pp. 992-1007.
Leachman, R.C., Lin V., and Palezzato P. (2002), “Scheduling dedicated lithography equipment,” IMA Workshop on the Role of Optimization in Supply Chain Management, University of Minnesota, September 23-27.
Marler, R. T. and Arora, J. S., (2004), “Survey of multi-objective optimization methods for engineering,” Structural and Multidisciplinary Optimization, Vol. 26, No. 6, pp. 369-395.
Michalewicz, Z. (1995), Genetic algorithms + Data structures = Evolution programs, Springer-Verlag, Berlin.
Osyczka, A., (1984), Multicriterion Optimization in Engineering with Fortran Programs, John Wiley &; Sons, New York.
Park, S., Fowler, J., Carlyle, M., and Hickie, M., (1999), “Assessment of potential gains in productivity due to proactive reticle management,” Proceedings of the 1999 Winter Simulation Conference, Phoenix, AZ, December 5-8.
Rudolph, G., (2001), “Evolutionary search under partially ordered fitness sets,” In Proceedings of the International Symposium on Information Science Innovations in Engineering of Natural and Artificial Intelligent Systems, Dubai, UAE, March 17-21.
Shirley J. Tanjong (2011), "Bottleneck Management Strategies in Semiconductor Wafer Fabrication Facilities" Proceedings of the 2011 International Conference on Industrial Engineering and Operations Management, Kuala Lumpur, Malaysia, January 22.
Shr, A., Liu, A., and Chen, P. P., (2006), “A Load Balancing Method For Dedicated Photolithography Machine Constraint,” Information Technology for Balanced Manufacturing Systems, Vol. 220, pp. 339-348.

Shr, A., Liu, A., and Chen, P. P., (2008), “Load Balancing Among Photolithography Machines in the Semiconductor Manufacturing System,” Journal of Information Science and Engineering, Vol. 24, No, 2, pp. 379-391.
Subhash, C. S., Amrusha, V., and Lixin, W., (2011),” A survey of dispatching rules for operational control in wafer fabrication,” Production Planning &; Control: The Management of Operations, Vol. 22, No. 1, pp. 4-24.
Volgenant, A., (2002), “Solving some lexicographic multi-objective combinatorial problems,” European Journal of Operational Research, Vol. 139, No. 3, pp. 578-584.
Waltz, F. M., (1967), “An engineering approach: hierarchical optimization criteria,” IEEE Transactions on Automatic Control, Vol. 12, No. 2, pp. 179-180.
Wu, M. C. and Chiou, C. W., (2009), “Scheduling semiconductor in-line steppers in new product/process introduction scenarios,” International Journal of Production Research, Vol. 48, No. 6, pp. 1835-1852.
Wu, M. C., Huang, Y. L., Chang, Y. C., Yang, K. F., (2006), “Dispatching in semiconductor fabs with machine-dedication features,” The International Journal of Advanced Manufacturing Technology, Vol. 28, No.9, pp. 978-984.
Wu, M.C., Jiang, J. H. and Chang, W. J., (2008), “Scheduling a hybrid MTO/MTS semiconductor fab with machine-dedication features,” International Journal Production Economocs, Vol. 112, No. 1, pp. 416-426.
Wu, S. D., Erkoc, M., and Karabuk, S. (2005), "Managing Capacity in the High-Tech Industry: A Review of Literature," The Engineering Economist, Vol. 50, No. 2, pp. 125-158.
Zadeh, L., (1963), “Optimality and Non-Scalar-Valued Performance Criteria,” IEEE Trans Autom Control, Vol. 8, No. 1, pp. 59-60
Zitzler, E., Deb, K., and Thiele, L., (2000), “Comparison of multiobjective evolutionary algorithms: Empirical results,” Evolutionary computation, Vol. 8, No. 2, pp. 173-195.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊