跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/26 10:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林哲宇
研究生(外文):Lin, Che-Yu
論文名稱:以電化學技術與自組裝單分子膜表面改質技術於透明導電玻璃上製備鉑電極之研究
論文名稱(外文):Fabrication of platinum electrodes on transparent conductive glass by electrochemical deposition and surface modification of self-assembled monolayers
指導教授:萬其超萬其超引用關係
指導教授(外文):Wan, Chi-Chao
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:142
中文關鍵詞:染料敏化太陽能電池電化學電鍍表面改質自組裝單分子層
外文關鍵詞:Dye-sensitized solar cellelectrochemical depositionsurface modificationself-assembled monolayer
相關次數:
  • 被引用被引用:1
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本研究的主要目的是以電化學沉積技術與自主裝單分子膜表面改質
技術來開發一簡單、低溫的製程以製備應用於染料敏化太陽能電池上之鉑
對電極,其中電化學沉積技術包含了無電電鍍與電鍍兩種方式。
在無電電鍍沉積的製程上, 吾人配合適當的表面改質技術
(3-(2-Aminoethylamino)propylmethyl-dimethoxysilane (Me-EDA-Si))成功開
發出一低溫濕式製程,可製備出具有高度選擇性的鉑對電極於透明導電玻
璃上。吾人透過螢光顯微鏡、接觸角測試與原子力顯微鏡分析,發現
Me-EDA-Si 可成功的改質於透明導電玻璃上,此外,本研究同時利用高解
析電子能譜儀來分析每一步驟的改質結果,證明鈀觸媒可成功的接於導電
玻璃上以催化無電鍍的進行,因而發現經無電電鍍沉積的薄膜呈現粗糙的
表面而提高了鉑觸媒表面催化反應的活化位置。因此利用無電電鍍所製備
出的鉑對電極所組裝而成的染料敏化太陽能電池具有較利用濺鍍法所製
備之鉑對電極所組成的電池有較高效率。
而在電鍍製程的開發上,吾人成功的利用直接電鍍法在含有添加劑
Me-EDA-Si 的電鍍液中於30 秒內製備出一同時具有低電子轉移阻抗、較
少的白金含量與高活性面積的鉑對電極。吾人也發現,利用Me-EDA-Si
作為電鍍添加劑時,可以提高電鍍的電流效率且可以抑制半圓形的白金晶
粒成長,因此可得到較高比表面積的鉑電極。此外,將此利用電鍍法所製
備之鉑對電極組裝成染料敏化太陽能電池,吾人發現在Me-EDA-Si 添加濃
度為0.01 vol%時,其效率可達7.39%遠高於利用濺鍍法所製備之鉑對電
極。
使用電鍍法製備白金對電極的過程中,我們發現添加劑具有加速電鍍
並抑制半圓形晶粒成長的效果,所以在最後一部分,我們利用電化學實驗
IV
來了解添加劑對白金在電鍍時成核與成長機制的變化。根據電流-時間的變
化曲線和成核、成長機制模擬的結果發現,在較高白金濃度的情況下,添
加少量的Me-EDA-Si 具有幫助瞬間(instantaneous)成核的效果。相反地,
過量的添加劑會使得成核機制朝向逐步(progressive)成長。
In this study, we aim to develop a simple, low temperature process to
fabricate the Pt counter electrodes for dye-sensitized solar cells (DSSCs) based
on electrochemical deposition techniques including electroless deposition
(ELD), electrodeposition (ECD) and surface modification of self-assembled
monolayers (SAMs).
By electroless deposition, a cost-effective and low- temperature wet
process to coat Pt on counter electrode has been developed with superior
coating selectivity by means of self-assembly monolayers modification and
electroless deposition techniques. Images of fluorescent test and atomic force
microscope measurements demonstrated that 3-(2-Aminoethylamino)
propylmethyl- dimethoxysilane (Me-EDA-Si) was homogeneously grafted on
FTO surface and XPS result proves that the palladium deposited on the FTO
surface initiates the electroless deposition. The Pt deposit so obtained exhibits
rough morphology and increased active sites. This method makes it easy to
deposit a Pt thin-film under ambient condition without the need for high
vacuum chamber. Moreover, the so-prepared DSSC exhibits improved
performance compared to the DSSC with a sputtered Pt counter electrode.
In the case of electrodeposition, Pt counter electrodes with low
charge-transfer resistance (Rct), low Pt loading and high active surface area can
be obtained within 30s by using the direct-current deposition in the presence of
3-(2-Aminoethylamino) propyl -methyldimethoxysilane (Me-EDA-Si) as an
II
additive. The addition of Me-EDA-Si can not only enhance the current
efficiency but also inhibit the growth of semicircle-like grains, thus resulting in
Pt electrode with high active surface area. Consequently, the dye-sensitized
solar cells (DSSCs) fabricated with so-prepared Pt electrodes exhibited cell
efficiency of 7.39% while 0.01 vol% Me-EDA-Si was added, which is much
superior to that with sputtered-Pt electrodes under the same assembly
conditions.
In the last part, we would like to know how additive affects the Pt
nucleation and growth mechanism on the FTO surface since the additive
seemingly acts as an accelerator during Pt electrodeposition by studying the
FESEM images of electrodeposited-Pt electrode fabricated from a plating bath
containing Me-EDA-Si. According to the current-time transients experiments
and S-H theory model simulation, we found that Me-EDA-Si functions as
accelerator to promote nucleation with low concentration of additive under
high precursor concentration. By contrast, excess additive tends to influence
the nucleation of Pt deposition towards to progressive mechanism.
Abstract ............................................................................................................... I
摘要 ............................................................................................................ III
Table of Contents .............................................................................................. V
List of Tables .................................................................................................... IX
List of Figures ................................................................................................... X
Chapter 1 Introduction of Dye-Sensitized Solar Cells ........................................ 1
1.1 General background of Dye-Sensitized Solar Cells ............................. 2
1.2 The operating principle of DSSCs ....................................................... 5
1.3 Counter electrodes in dye-sensitized solar cells .................................. 8
1.3.1 Role of counter electrode ........................................................................ 8
1.3.2 Energy loss in counter electrode ............................................................. 8
1.3.3 Surface coating on counter electrode ................................................... 11
1.3.3.1 Carbonaceous counter electrode ................................................. 11
1.3.3.2 Conducting polymer-based counter electrode ............................ 14
1.3.3.3 Platinum-based counter electrode ............................................... 17
1.3.3.4 Reason for developing the Pt counter electrode by
electrochemical deposition .......................................................... 30
1.4 Introduction of self-assembled monolayers (SAMs) .................................. 32
1.4.1 The structure of self-assembled monolayers (SAMs) .......................... 33
1.4.2 The working mechanism of silane-based self-assembled monolayers . 34
1.5 Metal deposition on SAMs-modified substrate .......................................... 37
1.5.1 Electrochemical metal deposition on top of SAMs-modified oxide
VI
surface. ................................................................................................... 37
1.5.1.1 Application of SAMs molecules to modify the surface by silanol
group ........................................................................................... 37
1.5.1.2 Role of SAMs on the substrate for metal deposition .................. 40
1.6 Motivation of this research ......................................................................... 43
Chapter 2 Electroless Platinum Counter Electrode for Dye-Sensitized Solar
Cells by Using Self-Assembled Monolayer Modification ................. 44
2.1 Introduction ................................................................................................. 44
2.1.1 Catalyzation process for electroless deposition .................................... 46
2.1.2 Platinum bath for electroless deposition .............................................. 47
2.2 Experiments ................................................................................................ 49
2.2.1 Materials and chemicals ....................................................................... 49
2.2.2 Preparation of Pt counter electrodes ..................................................... 51
2.2.3 Characterization of surface morphology, composition and adhesion... 52
2.2.4 Measurement of electrochemical impedance spectroscopy ................. 54
2.2.5 Photocurrent density-voltage test of ELD-Pt ....................................... 54
2.3 Results and discussion ................................................................................ 55
2.3.1 Pd-activated FTO substrate for electroless deposition ......................... 55
2.3.2 Surface modification with SAMs molecular on FTO surface for
electroless deposition ............................................................................. 58
2.3.2.1 Reasons for choosing Me-EDA-Si as a surface modifier – Silanes
with methoxyl- anchoring groups (-OCH3) ................................ 58
2.3.2.2 Reasons for choosing Me-EDA-Si as a surface modifier –
Adhesion/catalyst layer for Pt electroless deposition on FTO
surface ......................................................................................... 58
VII
2.3.2.3 Reasons for choosing Me-EDA-Si as surface modifier – Steric
hindrance effect ........................................................................... 59
2.3.3 Characterization of ME-EDA-Si-modified FTO substrate .................. 63
2.3.3.1 Solvent selection for surface modification of Me-EDA-Si ........ 63
2.3.3.2 Surface modification of FTO by ME-EDA-Si ............................ 63
2.3.3.2.1 Contact angle test and atomic force microscopy (AFM)
analysis ............................................................................. 63
2.3.3.2.2 Fluorescence imaging technique ..................................... 66
2.3.4 Characterization of the formation of Pd-activated SAMs on FTO
substrate (catalyzation step) ................................................................... 67
2.3.4.1 XPS analysis ............................................................................... 67
2.3.5 Surface morphology and composition of as-deposited Pt thin film ..... 70
2.3.6 Electrochemical impedance spectroscopy (EIS) .................................. 72
2.3.7 The Photocurrent-voltage (I-V) curves ................................................ 73
2.4 Conclusions ................................................................................................. 75
Chapter 3 High-performance and low Platinum loading electrodeposited-Pt
counter electrodes for dye-sensitized solar cells ................................ 76
3.1 Introduction ................................................................................................. 76
3.2 Experiment .................................................................................................. 78
3.2.1 Materials and chemicals ....................................................................... 78
3.2.2 Preparation of Pt counter electrodes ..................................................... 80
3.2.3 Characterization of electrodeposited-Pt counter electrodes ................. 80
3.2.4 Measurement of electrochemical properties – Electrochemical
impedance spectroscopy and cyclic voltammetric test .......................... 81
3.2.5 Photocurrent density-voltage test ......................................................... 81
VIII
3.3 Results and discussion ................................................................................ 83
3.3.1 Surface morphology and ICP analysis ................................................. 83
3.3.1.1 Influence of the additive – Concentration effect......................... 83
3.3.1.2 The influence of the additive – Time difference ......................... 87
3.3.2 Chronopotentiometric studies ............................................................... 89
3.3.3 Electrochemical impedance spectroscopy (EIS) .................................. 93
3.3.4 Cyclic voltammetric (CV) analysis ...................................................... 95
3.3.5 The Photocurrent-voltage (I-V) curves ................................................ 98
3.4 Conclusion ................................................................................................ 100
Chapter 4 The study of nucleation and growth mechanism of electrodeposition
Platinum on FTO glass in the presence of 3-(2-Aminoethylamino)
propylmethyldimethoxysilane .......................................................... 101
4.1 Introduction ............................................................................................... 101
4.2 Experiment ................................................................................................ 105
4.3 Results and discussion .............................................................................. 106
4.3.1 Cyclic voltammetry ............................................................................ 106
4.3.2 Nucleation and growth of platinum – Current-time transients ........... 108
4.3.3 Nucleation and growth mechanism of platinum – SEM analysis ...... 113
4.4 Conclusions ............................................................................................... 118
Chapter 5 Conclusions and Future works ....................................................... 119
5.1 Conclusions ............................................................................................... 119
5.2 Future works ............................................................................................. 120
Chapter 6 References ...................................................................................... 122
Chapter 7 Publications ………………………………………………...…….141
1 M. Grätzel, “Photoelectrochemical Cells”, Nature, 414 (2001) 338.
2 H. Vogel, “Lehrbuch der Photographie”, Berlin, 1878.
3 H. Meier, “Sensitization of Electrical Effects in Solids”, J. Phys. Chem., 69
(1965) 719.
4 H. Tributsch, M. Calvun, “Electrochemistry of excited molecules.
Photoelectrochemical reactions of chlorophylls”, Photochem. Photobiol.,
14 (1971) 95.
5 R. Memming, H. Tributsch, “Electrochemical investigations on the spectral
sensitization of gallium phosphide electrodes”, J. Phys. Chem., 75 (1971)
562.
6 H. Gerischer, “Electrochemical techniques for the study of
photosensitization”, Photochem. Photobiol., 16 (1972)243.
7 C. W. Tang, “Two-layer Organic Photovoltaic Cell”, Appl. Phys. Lett., 48
(1986) 183.
8 J. Desilvestro, M. Grätzel, L. Kavan, J. Moser, “Highly efficiency
sensitization of titanium dioxide”, J. Am. Chem. Soc. 107 (1985) 2988
9 B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on
dye-sensitized colloidal TiO2 films”, Nature, 353 (1991) 737.
10 D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, I. Riess, “Nature of
Photovoltaic Action in Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 104
123
(2000) 2053.
11 N. Papageorgiou, W. F. Maier, M. Grätzel, “An iodine/Triiodine reduction
electrocatalyst for aqueous and organic media”, J. Electrochem. Soc., 144
(1997) 876.
12 N. Papageorgiou, “Counter-electrode function in nanocrystalline
photoelectrochemical cell configurations”, Coordin. Chem. Rev., 248
(2004) 1421.
13 J. Halme, P. VAHERMAA, k. Miettunen, P. Lund, “Device physics of dye
solar cells”, Adv. Mater., 22 (2010) E210.
14 Hauch. A., Georg A., “Diffusion in the electrolyte and charge-transfer
reaction at the platinum electrode in dye-sensitized solar cells”,
Electrochim.Acta, 46 (2001) 3457.
15 H. S. Wroblowa, A. Saunders, “Flow-through electrodes: II. The I3-/Iredox
couple”, J. Electroanal. Chem. 42 (1973) 329.
16 K. Suzuki, M. Yamamoto, M. Kumagai, S. Yanagida, “Application of
carbon nanotubes to counter electrodes of dye-sensitized solar cells”,
Chem. Lett., 32 (2003) 28.
17 J. E. Trancik, S. C. Barton, J. Hone, “Transparent and catalytic carbon
nanotube films”, Nano Lett., 8 (2008) 982.
18 J. Han, H. Kim, D. Y. Kim, S. M. Jo, S. Y. Jang, “Water-soluble
polyelectrolyte-grafted multiwalled carbon nanotube thin films for
efficient counter electrode of dye-sensitized solar cells”, ACS Nano, 4
(2010) 3503.
19 S. Hwang, J. Moon, S. Lee, D. H. Kim, D. Lee, W. Choi, M. Jeon, “Carbon
124
nanotubes as counter electrode for dye-sensitized solar cells”, Electron.
Lett., 43 (2007) 1455.
20 T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P.
Liska, R. Humphry-Baker, P. Comte, P. Pechy, M. Grätzel, “Highly
efficient dye-sensitized solar cells based on carbon black counter
electrodes”, J. Electrochem. Soc., 153 (2006) A2255.
21 W. J. Lee, E. Ramasamy, D. Y. Lee, J. S. Song, “Performance variation of
carbon counter electrode based dye-sensitized solar cell”, Sol. Energy
Mater. Sol. Cells, 92 (2008) 814.
22 K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura, K. Murata,
“High-performance carbon counter electrode for dye-sensitized solar cells”
Sol. Energy Mater. Sol. Cells, 79 (2003) 459.
23 H. Lindstrom, A. Holmberg, E. Magnusson, S. E. Lindquist, L. Malmqvist,
A. Hagfeldt, “A new method for manufacturing nanostructured electrodes
on plastic substrates”, Nano Lett., 1 (2001) 97.
24 J. G. Nam, Y. J. Park, B. S. Kim, J. S. Lee, “Enhancement of the efficiency
of dye-sensitized solar cell by utilizing carbon nanotubes counter
electrode”, Scripta Mater., 62 (2010) 148.
25 M. Dietrich, J. Heinze, G. Heywang, F. Jonas, “Electrochemical and
spectroscopic characterization of polyalkylenedioxythiophenes”, J.
Electroanal. Chem., 369 (1994) 87.
26 T. Yohannes, O. Inganas, “Photoelectrochemical studies of the junction
between poly[3-(4-octylphenyl)thiophene] and a redox polymer
electrolyte”, Sol. Energy Mater. Sol. Cells, 51 (1998) 193.
125
27 F. Jonas, I. Schrader, “Conductive modifications of polymers with
polypyrroles and poly thiophenes”, Synth. Met. 41 (1991) 831.
28 Y. Saito, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida, “I-/I3
- redox reaction
behavior on poly(3-4-octylphenylthiophene) counter electrode in
dye-sensitized solar cells”, J. Photochem. Photobiol. A, 164 (2004) 153.
29 K. M. Lee, P. Y. Chen, C. Y. Hsu, J. H. Huang, W. H. Ho, “A
high-performance counter electrode based on
poly(3,4-alkylenedioxythiophene) for dye-sensitized solar cells”, J. Power
Sources, 188 (2009) 313.
30 A. Kay, M. Grätzel, “Low cost photovoltaic modules based on dye
sensitized nanocrystalline titanium dioxide and carbon powder”, Sol.
Energy Mater. Sol. Cells, 44 (1996) 99.
31 F. C. Wu, C. C. Wan, Y. Y. Wang, L. D. Tsai, K. L. Hsueh, “Improvement of
Pt-catalyst dispersion and utilization for direct methanol fuel cells using
silane coupling agent”, J. Electrochem. Soc., 154 (2007) B528.
32 H. Bönnemann, G. Khelashvili, S. Behrens, A. Hinsch, K. Skupien, E.
Dinjus, “ Role of the platinum nanoclusters in the iodine/triiodine redox
system of dye solar cells”, J. Clust. Sci., 18 (2006) 141.
33 V. A. Macagno, M. C. Giordano, “Kinetics and Mechanisms of
Electrochemical Reactions on Platinum with Solutions of Iodine-Sodium
Iodide in Acetonitrile”, Electrochim. Acta, 14 (1969) 335.
34 V. A. Macagno, M. C. Giordano, “Study of the iodide—tri-iodide redox
electrode in dimethylsulphoxide”, Electrochim. Acta, 11 (1966) 1553.
35 X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, E. Abe, “Effect of the
126
thickness of the Pt film coated on a counter electrode on the performance
of a dye-sensitized solar cell”, J. Electroanal. Chem., 570 (2004) 257.
36 X. Fang, T. Ma, G. Guan, M. Akiyama, E. Abe, “Performances
characteristics of dye-sensitized solar cells based on counter electrodes
with Pt films of different thickness”, J. Photochem. Photobiol. A.
Chemistry, 164 (2004) 179.
37 N. Papageorgiou, W. F. Maier, M. Gratzel, “An iodine/triiodide reduction
electrocatalyst for aqueous and organic media”, J. Electrochem. Soc., 144
(1997) 876.
38 G. Wang, Y. Lin, X. Xiao, X. Li, W. Wang, “X-ray photoelectron
spectroscopy analysis of the stability of platinized catalytic electrodes in
dye-sensitized solar cells”, Surf. Interface Anal., 36 (2004) 1437.
39 J. L. Lan, Y. Y. Wang, C. C. Wan, T. C. Wei, H. P. Feng, C. Peng, H. P.
Cheng, Y. H. Chang, W. C. Hsu, “The simple and easy way to
manufacture counter electrode for dye-sensitized solar cells”, Curr. Appl.
Phys. 10 (2010) s168.
40 C. Y. Lin, J. Y. Lin, J. L. Lan, T. C. Wei, C. C. Wan, “Electroless Platinum
Counter Electrode for Dye-Sensitized Solar Cells by Using Self-Assembly
Monolayer Modification”, Electrochem. Solid State Lett., 13 (2010) D77.
41 T. C. Wei, C. C. Wan and Y. Y. Wang, “Poly(N-vinyl-2-pyrrolidone)-capped
platinum nanoclusters on indium-tin oxide glass as counter electrode for
dye-sensitized solar cells”, Appl. Phys. Lett., 88 (2006) 103122.
42 T. C. Wei, C. C. Wan, Y. Y. Wang, C. C. Chen and H. S. Shiu,
“ Immobilization of poly(N-vinyl-2-pyrrolidone)-capped platinum
127
nanoclusters on indium-tin oxide glass and its application in dye-sensitized
solar cells”, J. Phys. Chem. C 111 (2007) 4847.
43 T. C. Wei, C. C. Wan, Y. Y. Wang, H. H. Tang, “Method for preparing an
electrode comprising an electrochemical catalyst layer thereon”, U.S.
Patent, 11/715462 (2008).
44 C. Peng, J. L. Lan, Y. H. Chang, W. C. Hsu, H. P. Cheng, S. P. Feng, W. H.
Chen, W. H. Chen, T. C. Wei, “Method of forming an electrode including
an electrochemical catalyst layer”, U.S. Patent 12/213307 (2009).
45 T. C. Wei, C. C. Wan, Y. Y. Wang, H. H. Tang, “Method for forming an
electrode comprising an electrocatalyst layer thereon and electrochemical
device comprising the same”, Taiwan Patent, No. I330409 (2010).
46 E. J. M. O’Sullivan, “Fundamental and practical aspects of the electroless
deposition reaction”, Advances in Electrochemical Science and
Engineering, 7 (2001) 225.
47 M. Charbonnier, M. Romand, Y. Goepfert, D. Leonard, M. Bouadi,
“Copper metallization of polymers by a palladium-free electroless
process”, Surf. Coat. Tech., 200 (2006) 5478.
48 C. M. Chen, C. H. Chen, T. C. Wei, “Chemical deposition of platinum on
metallic sheets as counter electrodes for dye-sensitized solar cells”,
Electrochim. Acta, 55 (2010) 1687.
49 C. M. Chen, C. H. Chen, S. J. Cherng, T. C. Wei, “Electroless deposition of
platinum on indium tin oxide glass as the counter electrode for
dye-sensitized solar cells”, Mater. Chem. Phys., 124 (2010) 173.
50 S. S. Kim, Y. C. Nah, Y. Y. Noh, J. Jo, D. Y. Kim, “Electrodeposited Pt for
128
cost-efficient and flexible dye-sensitized solar cells”, Electrochim. Acta 51
(2006) 3814.
51 L. L. Li, C. W. Chang, C. C. Chen, E. W. G. Diau, “Electrodeposited low
platinum loaded films as efficient counter electrodes for dye-sensitized
solar cells”, 218th ECS meeting, Abstract no. 1660.
52 A. Kay, M. Grätzel, “Low cost photovoltaics modules based on dye
sensitized nanocrystalline titanium dioxide and carbon power”, Sol.
Energy Mater. Sol. Cells, 44 (1996) 99.
53 E. Olsen, G. Hagen, S. E. Lindquist, “Dissolution of platinum in methoxy
propionitrile containing LiI/I2”, Sol. Energy Mater. Sol. Cells, 63 (2000)
267.
54 L. Y. Lin, P. C. Nien, C. P. Lee, K. W. Tsai, M. H. Yeh, R. Vittal, K. C. Ho,
“Low-temperature flexible photoanode and net-like Pt counter electrode
for improving the performance of dye-sensitized solar cells”, J. Phys.
Chem. C, 114 (2010) 21808.
55 C. Duan, M. E. Meyerhoff, “Separation-Free Sandwich Enzyme
Immunoassays Using Microporous Gold Electrodes and Self-Assembled
Monolayer/Immobilized Capture Antibodies”, Anal. Chem., 66 (1994)
1369.
56 C. D. Bain, G. M. Whitesides, “Depth sensitivity of wetting: monolayers
of .omega.-mercapto ethers on gold”, J. Am. Chem. Soc., 110 (1988) 5897.
57 R. K. Smith, P. A. Lewis, P. S. Weiss, “Patterning self-assembled
monolayers”, Prog. Surf. Sci., 75 (2004) 1.
58 M. Geissler, H. Kind, P. Schmidt-Winkel, B. Michel, E. Delamarche,
129
“Direct patterning of NiB on glass substrate using microcontact printing
and electroless deposition”, Langmuir, 19 (2003) 6283.
59 L. Wu, F. Camacho-Alanis, G. Zangari, N. Swami, “Electroless deposition
of Cu on acid terminated self assembled monolayers on semiconductor
surfaces”, 211th ECS meeting, Abstract no. 509.
60 Y. Lu, S. Liang, M. Chen, J. Jia, “Fabrication amd characterization of
positive and negative copper sulfide micropatterns on self-assembled
monolayers”, J. Colloid Interf. Sci., 332 (2009) 32.
61 Y. Lu, G. Yi, J. Jia, Y. Liang, “Preparation and characterization pf patterned
copper sulfide thin films on n-type TiO2 film surfaces”, Appl. Surf. Sci.,
256 (2010) 7316.
62 R. A. Hatton, S. R. Day, M. A. Chesters, M. R. Willis, “Organic
electroluminescent devices: enhanced carrier injection using an
organosilane self assembled monolayer (SAM) derivatized ITO electrode”,
Thin Solid Films, 394 (2001) 292.
63 W. C. Bigelow, D. L. Pickett, W. A. Zisman, “Pleophobic monolayers. 1.
Films adsorbed from solution in non-polar liquids”, J. Colloid Interf. Sci.,
1 (1946) 513.
64 A. Ulman, “Formation and structure of self-assembled monolayers”, Chem.
Rev., 96 (1996) 1533.
65 Y. T. Tao, “Structure comparsion of self-assembled monolayers of
N-alkanoic acids on the surfaces of silver, copper and aluminum” J. Am.
Chem. Soc., 115 (1993) 4350.
66 D. L. Allara, R. G. Nuzzo, “Spontaneously organized molecular assemblies.
130
1. Formation, dynamics and physical-properties of normal-alkanoic acids
adsorbed from solution on an oxided aluminum surface”, Langmuir, 1
(1985) 45.
67 R. G. Nuzzo, D. L. Allara, “Adsorption of bifunctional organic disulfides
on gold surface” J. Am. Chem. Soc., 105 (1983) 4481.
68 R. G. Nuzzo, F. A. Fusco, D. L. Allara, “Spontaneously organized
molecular assemblies. 3. Preparation and properties of solution adsorbed
monolayers of organic disulfides on gold surface”, J. Am. Chem. Soc., 109
(1987) 2358.
69 E. Delamarche, M. Geissler, R. H. Magnuson, H. Schmid, B. Michel,
“Pattern NiB electroless deposition on glass using an electroplated Cu
mask, microcontact printing and wet etching”, Langmuir, 19 (2003) 5892.
70 M. D. Porter, T. B. Bright, D. L. Allara, C. E. D. Chidsey, “Spontaneously
organized molecular assemblies. 4. Structural characterization of
normal-alkyl thiol monolayers on gold by optical ellipsometry, infrared
spectroscopy and electrochemistry”, J. Am. Chem. Soc., 109 (1987) 3559.
71 D. K. Schwartz, “Mechanisms and kinetics of self-assembled monolayer
formation”, Annu. Rev. Phys. Chem., 52 (2001) 107.
72 S. Campuzano, V. Escamilla-Gomez, M. Pedrero, J. M. Pingarron,
“Electrochemical biosensors using thiolated tetrathiafulvalene derivative
self-assembled monolayers. Application to the construction of a fructose
biosensor”, 213th ECS meeting, Abstract no. 1223.
73 F. Nakamura, E. Ito, Y. Sakao, N. Ueno, I. N. Gatuna, F. S. Ohuchi, M.
Hara, “Preparation of a branched DNA self-assembled monolayer toward
131
sensitive DNA biosensors”, Nano Lett., 3 (203) 1083.
74 P. Lu, A. V. Walker, “Investigation of the mechanism, of electroless
deposition of copper on functionalized alkanethiolate self-assembled
monolayers adsorbed on gold”, Langmuir, 23 (2007) 12577.
75 J. Sagiv, “Organized monolayers by adsorption, I. Formation and structure
of oleophobic mixed monolayers on solid surfaces”, J. Am. Chem. Soc.,
102 (1980) 92.
76 R. R. Rye, G. C. Nelson, M. T. Dugger, “Mechanistic aspects of
alkylchlorosilane coupling reactions”, Langmuir, 13 (1997) 2965.
77 P. Silberzan, L. Leger, D. Ausserre, J. J. Benattar, “Silanation of
silcasurface. A new method of constructing pure or mixed monolayers”
Langmuir, 7 (1991) 1647.
78 S. Okumoto, N, Fujita, S. Yamabe, “Theoretical study of Hydrolysis and
condensation of silicon alkoxides”, J. Phys. Chem. A, 102 (1998) 3991.
79 H. Shimakoshi, A. Nakazato, M. Tokunaga, K. Katagiri, K. Ariga, J. I.
Kikuchi, Y. Hisaeda, “Hydrophobic vitamin B12. Part 18. Preparation of a
sol-gel modified electrode trapped with a vitamin B12 derivative and its
photoelectrochemical reactivity”, Dalton Trans., (2003) 2308.
80 X. Liu, K. G. Neoh, E. T. Kang, “Viologen-functionalized conductive
surface: physicochemical and electrochemical characteristics, and
stability”, Langmuir, 18 (2002) 9041.
81 N. Y. Kim, N. L. Jeon, I. S. Choi, S. Takami, Y. Harada, K. R. Finnie, G. S.
Girolami, R. G. Nuzzo, G. M. Whitesides, P. E. Laibinis, “Surface-initiated
ring-opening metathesis polymerization on Si/SiO2”, Macromolecules, 33
132
(2000) 2793.
82 M. Weck, J. J. Jackiw, R. R. Rossi, P. S. Weiss, R. H. Grubbs,
“Ring-opening metathesis polymerization from surfaes”, J. Am. Chem.
Soc., 121 (1999) 4088.
83 L. Y. Yang, X. Z. Chen, H. Xu, D. Q. Ye, H. Tian, S. G. Yin, “Surface
modification of indium tin oxide anode with self-assembled monolayer
modified Ag film for improved OLED device characteristics”, Appl. Surf.
Sci., 254 (2008) 5055.
84 J. Liu, L. Zhang, N. Gu, Q. Hong, J. Ren, Y. Wu, “Micro-patterning of
3-aminopropyltrimethoxysilane self-assembled monolayers with colloidal
gold”, Supramolecular Science, 5 (1998) 705.
85 E. Delamarche, M. Geissler, J. Vichiconti, W. S. Graham, P. A. Andry, J. C.
Flake, P. M. Fryer, R. W. Nunes, B. Michel, E. J. O’sullivan, H. Schmid, H.
Wolf, R. L. Wisnieff, “Electroless deposition of NiB on 15 inch glass for
liquid crystal displays”, Langmuir, 19 (2003) 5923.
86 E. Delamarche, J. Vichiconti, S. A. Hall, M. Geissler, W. Graham, B.
Michel, R. Nunes, “Electroless deposition of Cu on glass and patterning
with microcontact printing”, Langmuir, 19 (2003) 6567.
87 M. Geissler, H. Kind, P. Schmidt-Winkel, B. Michel, E. Delamarche,
“Direct patterning of Ni-B on glass substrates using microcontact printing
and electroless deposition”, Langmuir, 19 (2003) 6283.
88 Z. C. Liu, Q. G. He, P. Hou, P. F. Xiao, N. Y. He, Z. H. Lu, “Electroless
plaring of copper through successive pretreatment with silane and colloidal
silver”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 257-258
133
(2005) 283.
89 D. L. Liu, Z. G. Yang, C. Zhang, “Electroless Ni-Mo-P diffusion barriers
with Pd-activated self-assembled monolayer on SiO2”, Mater. Sci. Eng. B,
166 (2010) 67.
90 S. Sawada, Y. Masuda, P. Zhu, K. Koumoto, “Micropatterning of copper on
a poly(ethylene terephthalate) substrate modified with a self-assembled
monolayer”, Langmuir, 22 (2006) 332.
91 A. Mobius, D. Elbick, E. R. Weidlich, K. Feldmann, F. Schubler, J. Borris,
M. Thomas, A. Zanker, C. P. Klages, “Plasma-printing and galvanic
metallization hand in hand – A new technology for the cost-efficient
manufacture of flexible printed circuits”, Electrochim. Acta, 54 (2009)
2473.
92 C. H. Yoon, R. Vittal, J. Lee, W. S. Chae, K. J. Kim, “Enhanced
performance of a dye-sensitized solar cell with an
electrodeposited-platinum counter electrode”, Electrochim. Acta, 53 (2008)
2890.
93 A. Hauch, A. Georg, “Diffusion in the electrolyte and charge-transfer
reaction at the platinum electrode in dye-sensitized solar cells”,
Electrochim. Acta, 46 (2001) 3457.
94 M. Toivola, J. Halme, K. Miettunen, K. Aitola, P. D. Lund, “Nanostructured
dye solar cells on flexible substrates - Review”, Int. J. Energy Res., 33
(2009) 1145.
95 G. O. Mallory, J. B. Hajdu, Eds., “Electroless plating: Fundamental and
applications”, American Electroplaters and Surface Finishers Society:
134
Orlando, FL, (1990).
96 T. S. N. Sankara Narayanan, K. Krishnaveni and S. K. Seshadri,
“Electroless Ni-P/Ni-b duplex coatings: preparation and evaluation of
microhardness, wear and corrosion resistance”, Mater. Chem. Phys., 82
(2003) 771.
97 Y. Gao, Z. J. Zheng, M.Zhu and C. P. Luo, “Microstructure and mechanical
behavior of porous sintered steels”, Mater. Sci. Eng. A, 381 (2004) 98.
98 J. Y. Lin, C. Y. Lin, S. K. Liu, C. C. Wan, Y. Y. Wang, “Characterization of
electroless Ni-based alloys for use in bipolar plates of direct methanol fuel
cells”, Surf. Coat. Tech., 205 (2010) 2251.
99 W. J. Dressick, C. S. Dulcey, J. H. Georger, G. S. Calabrese, J. M. Calvert,
“Covalent binding of Pd catalysts to ligating self-assembled monolayer
films for selective electroless metal deposition”, J. Electrochem. Soc., 141
(1994) 210.
100 H. Kind, A. M. Bittner, O. Cavalleri, K. Kern, “Electroless deposition of
metal nanoislands on aminothiolate-functionalized Au(111) electrodes”, J.
Phys. Chem. B, 102 (1998) 7582.
101 W. J. Dressick, M. S. Chen, S. L. Brandow, “Patterned noncovalent
binding and metallization of adsorbates in thin film nanocavities”, J. Am.
Chem. Soc., 122 (2000) 982.
102 H. Esrom, “Fast selective metal deposition on polymers by using IR and
excimer VUV photons”, Appl. Surf. Sci., 168 (2000) 1.
103 Z. Geretovszky, I. W. Boyd, “Kinetic study of 222 nm excimer lamp
induced decomposition of palladium-acetate films”, Appl. Surf. Sci.,
135
138-139 (1999) 401.

104 C. Peng, S. H. Y. Lo, C. C. Wan, Y. Y. Wang, “Study of the adsorptive
behavior of Pd/PVP nanoparticles and its interaction with conditioner in
electroless copper deposition”, Colloids and surfaces A: Physicochem. Eng.
Aspects, 308 (2007) 93.
105 R. L. Cohen, J. F. D’Amico, K. W. West, “Mössbauer Study of Tin(II)
Sensitizer Deposits on Kapton”, J. Electrochem. Soc., 118 (1971) 2042.
106 E. A. Oster, R. G. Hamilton, N. Miekka, J. R. Henri, S. Maget,
“Deposition of catalytic noble metals”, US Patent 3423228 (1969).
107 R. N. Rhoda, R. F. Vines, “Bath and process for Pt and Pt alloys”, US
patent 3486928 (1969).
108 F. H. Leaman, “Method and composition of Pt platinum”, US Patent
3698939 (1972).
109 C. R. K. Rao, M. Pushpavanam, “Electroless deposition of platinum on
titanium substrates”, Mater. Chem. Phys., 68 (2001) 62.
110 A. S. Koslov, T. Palanisamy, D. Narasimhan, “Electroless autocatalytic
platinum plating”, US Patent 6391477 (2002).
111 D. J. Diaz, T. L. Williamson, X. Guo, A. Sood, P. W. Bohn, “Electroless
deposition of gold and platinum for metallization of the intrapore space in
porous gallium nitride”, Thin Solid Films, 514 (2006) 120.
112 P. Y. Chen, C. C. Wan, Y. Y. Wang, “The application of electroless pure
palladium deposition for surface finishing on print circuit boards”, Master
thesis, National Tsing-Hua University, (2009).
113 T. R. Hendricks, E. E. Dams, S. T. Wensing, I. Lee, “Effects of catalyst
136
introduction methods using PAMAM dendrimers on selective electroless
nickel deposition on polyelectrolyte multilayers”, Langmuir 23 (2007)
7404.
114 Y. Koide, Q. Wang, J. Cui, D. D. Benson, T. J. Marks, “Patterned
luminescence of organic light-emitting diodes by hot microcontact printing
(HμCP) of self-assembled monolayers”, J. Am. Chem. Soc., 122 (2000)
11266.
115 Y. Kado, A. Aoki, T. Miyashita, “Surface modification using polymer
Langmuir-Blodgett films”, J. Mater. Sci., 37 (2002) 4839.
116 H. R. Jhong, D. S. Wong, C. C. Wan, Y. Y. Wang, T. C. Wei, “A novel deep
eutectic solvent-based ionic liquid used as electrolyte for dye-sensitized
solar cells”, Electrochem. Commun., 11 (2009) 209.
117 H. Bonnemann, G. Khelashvili, S. Behrens, A. Hinsch, K. Skupien, E.
Dinjus, “Role of the platinum nanoclusters in the iodine/triiodine redox
system of dye solar cells”, J. Clust. Sci., 18 (2006) 141.
118 R. A. Hatton, S. R. Day, M. A. Chesters, M. R. Willis, “Organic
electroluminescent devices: enhanced carrier injection using an
orgnosilane self assembled monolayer (SAM) derivatized ITO electrode”,
Thin Solid Films, 394 (2001) 292.
119 S. Besbes, H. B. Ouada, J. Davenas, L. Ponsonnet, N. Jaffrezic, P.
Alcouffe, “Effect of surface treatment and functionalization on the ITO
properties for OLEDs”, Mater. Sci. Eng. C, 26 (2006) 505.
120 S. R. Wasserman, Y. T. Tao, G. M. Whitesides, “Structure and reactivity of
alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on
137
silicon substrates”, Langmuir, 5 (1989) 1074.
121 M. A. Schneeweiss, H. Hagenstrom, M. J. Esplandiu, D. M. Kolb,
“Electrolytic metal deposition onto chemically modified electrodes”, Appl.
Phys. A, 69 (1999) 537.
122 A. W. Czanderna, D. E. King, D. Spaulding, “Metal overlayers on organic
functional groups of self-organized molecular assemblies. 1. X-ray
photoelectron spectroscopy of interactions of Cu/COOH on 11-
mercaptoundecanoic acid”, J. Vac. Sci. Technol. A, 9 (1991) 2607.
123 G. C. Herdt, D. R. Jung, A. W. Czanderna, “Weak interactions between
deposited metal overlayers and organic functional groups of
self-assembled monolayers”, Prog. Surf. Sci., 50 (1995) 103.
124 D. L. Angst, G. W. Simmons, “Moisture absorption characteristics of
organosiloxane self-assembled monolayrs”, Langmuir, 7 (1991) 2236.
125 Y. F. Wu, B. R. Huang, “Patterning of ITO films on flexible substrates by
using self-assembled monolayer”, Mater. Lett., 64 (2010) 133.
126 L. Li, Z. H. He, W. W. Wang, Y. M. Fan, X. P. Mao, D. H. Chen, C. Chen,
“Synthesis of amino-functionalized epoxy acrylate film by
magnetic-filtered plasma stream”, Prog. Org. Coat., 56 (2006) 126.
127 Y. Lin, A. M. Ran, B. Sadanadan, E. A. Kenik, Y. P. Sun, “Functionalizing
multiple-walled carbon nanotubes with aminopolymers”, J. Phys. Chem. B,
106 (2002) 1294.
128 X. Cui, D. A. Hutt, D. J. Scurr, P. P. Conway, “The evolution of Pd/Sn
catalytic surfaces in electroless copper deposition”, J. Electrochem. Soc.,
158 (2011) D172.
138
129 L. N. Xu, H. F. Xu, K. C. Zhou, A. Q. Xu, Z. Q. Yue, N. Gu, H. Q. Zhang,
J. Z. Liu, K. J. Chen, “Study on a new activation method for initiating
electroless plating on alumina powders based on SAMs bonded palladium”,
Acta Phys. Chim. Sin., 18 (2002) 284.
130 J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, “Handbook of
X-ray photoelectron spectroscopy”, Physical Electronics, 1995.
131 G. Tsekouras, A. J. Mozer, G. G. Wallace, “Enhanced performance of dye
sensitized solar cells utilizing platinum electrodeposit counter electrodes”,
J. Electrochem. Soc. 155 (2008) K124.
132 Y. J. Song, J. K. Oh, K. W. Park, “Pt nanostructure electrodes pulse
electrodeposited in PVP for electrochemical power sources”,
Nanotechnology, 19 (2008) 355602.
133 P. C. Hidber, W. Helbig, E. Kim, G. M. Whitesides, “Microcontact
printing of palladium colloids: micron-scale patterning by electroless
deposition of copper”, Langmuir, 12 (1996) 1375.
134 M. Tan, J. N. Harb, “Additive behavior during copper electrodeposition in
solution containing Cl-, PEG, and SPS”, J. Electrochem. Soc., 150 (2003)
C420.
135 D. Qu, K. Uosaki, “platinum layer formation on a self-assembled
monolayer by electrochemical deposition”, Chem. Lett., 35 (2006) 258.
136 A. J. Bard, Electroanalytical Chemistry, vol. 9, Marcel Dekker, 1976.
137 P. Li, J. Wu, J. Lin, M. Huang, Z. Lan, Q. Li, “Improvement of
performance of dye-sensitized solar cells based on
electrodeposited-platinum counter electrode”, Electrochim. Acta, 53 (2008)
139
4161.
138 J. J. Kelly, A. C. West, “Copper deposition in the presence of polyethylene
glycol”, J. Electrochem. Soc., 145 (1998) 3472.
139 J. J. Kelly, C. Tian, A. C. West, “Leveling and microstructural effects of
additives for copper electrodeposition”, J. Electrochem. Soc., 146 (1999)
2540.
140 T. P. Moffat, D. Wheeler, D. Josell, “Electrodeposition of copper in the
SPS-PEG-Cl additive system I. kinetic measurement: Influence of SPS”, J.
Electrochem. Soc., 151 (2004) C262.
141 M. Zheng, M. Willey, A. C. West, “Electrochemical nucleation of copper
on ruthenium : effect of Cl-, PEG, and SPS”, Electrochem. Solid State
Lett., 8 (2005) C151.
142 A. Radisic, A. C. West, P. C. Searson, “Influence of additives on
nucleation and growth of copper on n-Si(111) from acidic sulfate
solutions”, J. Electrochem. Soc., 149 (2002) C94.
143 B. Scharifker, G. Hills, “Theoretical and experimental studies of multiple
nucleation”, Electrochim. Acta, 28 (1983) 879.
144 Y. S. Ko, Y. U. Kwon, “Electrochemical deposition of platinum on
fluorine-doped tin oxide: The nucleation mechanisms”, Electrochim. Acta,
55 (2010) 7276.
145 M. E. Hyde, R. G. Compton, “A review of the analysis of multiple
nucleation with diffusion controlled growth”, J. Electroanal. Chem., 549
(2003) 1.
146 A. Radisic, J. G. Long, P. M. Hoffmann, P. C. Searson, “Nucleation and

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 朱經明、王鳳妃(2006)。多媒體聽障者成功奮鬥故事協助聽障學生理解主要概念及提昇自我概念成效之研究。特殊教育研究學刊,30,135-154。
2. 吳宗立(2004)。師資培育新藍圖:新制師資培育制度探析。國教天地,155,35-40。
3. 吳武典(2004)。台灣師資培育的新貌。文教新潮,9(2),1-10。
4. 李振輝(1997)。聽語障無障礙環境與手語翻譯員制度。福利社會,61,15-21。
5. 邢敏華(1999)。淺談教育翻譯在融合教育的角色與師資培育問題。特教園丁,15(2),28-31。
6. 林坤燦、羅清水(2008)。台灣地區大專校院身心障礙學生對資源教室實施現況之調查研究。特殊教育學報,27,99-128。
7. 林宜玲(2009)。聽障生了沒--如何善用翻譯資源。特殊教育季刊,111,31-35。
8. 林怡慧(2008)。高中職聽覺障礙學生融合教育現況及轉銜服務之初探。特教園丁,24(2),23-37。
9. 林金定、嚴嘉楓、陳美花(2005)。質性研究方法:訪談模式與實施步驟分析。身心障礙研究,3(2),122-135。
10. 邱垂堂(2003)。我國當前中等學校、國民小學及幼稚園師資培育之探討。國民教育,44(1),2-5。
11. 宣崇慧(2001) 。資源、教室方案理念在大專院校之實施。特殊教育季刊,78,20-25。
12. 胡心慈(2005)。特殊教育實習教師專業社會化歷程研究。特殊教育與復健學報,13,69-89。
13. 胡心慈(2008)。特殊教育實習輔導教師輔導歷程之研究。特殊教育研究學刊,32(2),1-24。
14. 胡心慈、林淑莉(2011)。特殊教育實習輔導教師與實習教師教學後的互動與反思。特殊教育研究學刊,36(3),27-55。
15. 高淑清(2001)。在美華人留學生太太的生活世界:詮釋與反思。本土心理學研究,16,225-285。