跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 08:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳奕竹
研究生(外文):Chen,Yi-Chu
論文名稱:硫化鉛量子點轉相技術及其在量子點敏化太陽能電池之應用研究
論文名稱(外文):Study on Phase Transfer of PbS Quantum Dot and Its Application in Quantum Dot-Sensitized Solar Cells
指導教授:周更生周更生引用關係
指導教授(外文):Chou, Kan-Sen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:66
中文關鍵詞:硫化鉛量子點轉相技術量子點敏化太陽能電池氧化鋅核殼結構
外文關鍵詞:PbS quantum dotphase transferquantum dot-sensitized solar cellsZinc oxidecore-shell structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:492
  • 評分評分:
  • 下載下載:94
  • 收藏至我的研究室書目清單書目收藏:0
本研究以水相硫化鉛量子點製程,將硫化鈉滴入硝酸鉛與PVA高分子水溶液中生成硫化鉛量子點,以高分子PVA做為水相分散劑,於製程中調整硫化鈉進料速度與PVA濃度,控制量子點粒徑大小與分布,以TEM分析粒徑結果。研究結果硫化鈉以0.4ml/min 速度進料,於2wt% PVA水溶液中進行合成,可得粒徑4.57 nm,標準差1.2 nm大小量子點,且有80.8%(N%)以上量子點其導帶位置高於陽極基板(TiO2)導帶位置,利於電子傳遞至陽極。
由於水相合成硫化鉛量子點表面被PVA包覆,不利於電子傳輸,另一方面,水溶液表面張力較高,量子點不易滲入陽極材料孔隙中,因此本研究以轉相技術將水相硫化鉛量子點轉至油相,分散於正己烷中,並於轉相過程將PVA去除,研究結果以FTIR觀察量子點改質情形,以吸收光譜分析其莫耳吸光係數之變化。從FTIR中官能基訊號的消長,確定表面PVA被去除,以油酸根取代,量子點轉至油相後波長1155nm處莫耳吸光係數是水相的2.2倍,此外將吸光係數與波長積分,轉相後積分值是水相的1.7倍(波長範圍800-1300nm)。於轉相過程中添加正戊醇,研究對轉相效率之影響,轉相率以AA分析,經最佳化後達到90.6%轉相率。將轉相後硫化鉛量子點應用於量子點敏化太陽能電池達0.26%效率。
研究的另一焦點為氧化鋅包覆銀絲(Ag@ZnO)所構成的一維核殼結構(one dimensional core-shell structure),以PVP吸附於銀絲表面和鋅離子形成錯合物,經水熱後在表面形成10nm厚氧化鋅殼層,銀絲能作為電子通道使得電子快速傳遞至外電路中。研究討論水熱過程中不同比例之鋅離子和銀絲濃度對表面型態的影響,結果以TEM、SEM和XRD分析,觀察表面型態與分析材料結構,發現氧化鋅進行layer-plus-island成長。

We synthesized the lead sulfide quantum dot by a simple method and by controlling the content of dispersant (2wt%); PVA (polyvinyl alcohol) and the feeding rate of the precursor (0.4ml/min) we could control the exact size quantum dot. Lead sulfide quantum dot was characterized by transmission electron microscopy (TEM), X-ray electron diffraction (XRD) and Ultra violet-visible-near infrared spectroscopy (UV-Vis-NIR). Results show that lead sulfide quantum dot with an average diameter 4.57 nm and the narrow size distributions was obtained. Its standard deviation is 1.2nm. Furthermore, there are above 80.8% (N %) QDs have the higher conduction band than anode material (TiO2). Because aqueous phase QDs have the higher surface tension than organic phase, the QDs is hard to diffusion into the porous of TiO2. Besides, the aqueous phase dispersant (PVA) absorption on the surface of QDs would inhibit the electron transport. Therefore, we desire a phase transfer approach to solve these problems. We prepare the stable dispersion of lead sulfide (PbS) quantum dot in organic solvent by phase transfer. From the FTIR and absorption spectrum, after phase transfer the –OH group signal from the PVA is decrease and the molar absorptivity become 2.2 times. We study the content of the pentanol that affects the phase transfer efficiency, and after optimizing pentanol content the phase transfer efficiency is 90.6%. Afterward we apply the QDs in the quantum dot-sensitized solar cells the efficiency is 0.26%.
On the other hand, we synthesized one dimensional core-shell structure, zinc oxide was coated on the silver nanowire, where the diameter of Ag nanowire was 100 nm and the thickness of zinc oxide coating was 10nm. The polymer PVP (Polyvinylpyrrolidone) assisted the ionic zinc species absorption on surface of Ag. The Ag nanowire provided the high speed channel for electron passing through the anode to arrive to the external circuit. We change the ratio between the Zn2+ and Ag nanowire in the hydrothermal reaction. Observed the morphology of core-shell structure and found the layer-plus-island group.

目錄
摘要 III
Abstract IV
目錄 VI
圖目錄 VIII
表目錄 XII
前言 1
第一章 文獻回顧 5
1-1太陽能電池的發展歷史 5
1-2氧化鋅奈米線應用於敏化太陽能電池 8
1-3硫化鉛量子特性 12
1-4硫化鉛量子點製程回顧 13
1-4-1油相製程 13
1-4-2水相製程;以PVA高分子做為分散劑製作硫化鉛量子點 15
1-5轉相技術 17
1-6硫化鉛量子點於光電元件的應用 20
1-7多硫成分電解液與對電極 25
1-8 氧化鋅 27
1-9研究目標 29
第二章 實驗方法 31
2-1 藥品與儀器設備 31
2-2 硫化鉛量子點製程 33
2-3多硫成份電解液製作 35
2-4 元件製作 35
2-5 奈米銀絲製程 36
2-6氧化鋅包覆奈米銀絲核殼結構製程 36
第三章 結果與討論 38
3-1硫化鉛量子點鑑定分析 38
3-2前驅物進料速度的控制對硫化鉛量子點造成的影響 39
3-3水相硫化鉛量子點製程最適化討論 40
3-4硫化鉛量子點轉相技術研究 43
3-5 硫化鉛量子點敏化太陽能電池元件討論 51
3-6 奈米銀絲形貌觀察 53
3-7 氧化鋅包覆奈米銀絲核殼結構製程 54
3-8 不同鋅前驅物濃度與奈米銀線莫耳比對核殼結構的影響 56
3-9 氧化鋅包覆銀絲於量子點敏化太陽能電池之應用討論 57
第四章 結論 59
第五章 參考文獻 60


圖目錄
圖 一 量子點迷你傳導帶(mini band)示意圖 1
圖 二 量子點敏化太陽能電池傳導路徑示意圖 3
圖 三 CdS量子點吸收峰和粒徑大小關係 3
圖 四 敏化劑(N719)結構示意圖 6
圖 五 ZnO奈米線直立於電池陰極示意圖和SEM截面圖 8
圖 六 四種構型染敏電池分別為(a) ZnO NW array/NP composite, (b)vertical ZnO–NW array, (c) TiO2–NP 和 (d) horizontal TiO2–NW電子傳輸速度和生存時間與光線強度的關係 10
圖 七CdSe/CdS/ZnO 奈米線結構示意圖 10
圖 八 Diffused reflectance spectra (DRS)吸收光譜 (a) as-prepared ZnONWs (b) CdS/ZnO NWs和(c) CdSe/CdS/ZnO NWs. 以及(a)、(b)、(c)樣品的顏色 11
圖 九 硫化鉛量子點晶格結構(黑球為鉛原子;白球為硫原子) 13
圖 十 硫化鉛量子點吸收光譜 13
圖 十一 油相製程硫化鉛量子點隨置放時間增加,吸收光譜和粒徑的變化 14
圖 十二 油相製程中,添加TOP後發光強度獲得三倍的提升 15
圖 十三 水相製程中以PVA作為分散劑生成4nm硝酸鉛量子點吸收和螢光光譜 16
圖 十四 微胞結構示意圖(a)水包油結構(b)油包水結構 19
圖 十五 三種Winsor系統 斜線處為水相,空白處為油相,虛線處為乳化相 20
圖 十六 比較二十三種無機光電材料產生每瓦電所需的花費 21
圖 十七 (a)光電元件結構示意圖(b)材料的能階位置(c)元件的效率表現 22
圖 十八 (a)吸收光子能量和元件效率的關係(b)將吸收光子能量除以材料能隙和元件效率的關係 23
圖 十九 (a)硫化鉛量子點、電解液和TiO2彼此的能階位置(b)硫化鉛量子點吸附於TiO2上,其電子電動傳輸示意圖,其中ET和HT分別為電子傳輸和電洞傳輸 23
圖 二十 (a)Schottky Cell (b)Depleted-Heterojunction Cell (c)Sensitized Cell 結構和能階示意圖 24
圖 二十一 以多硫成分電解液做量子點敏化太陽能電池,其不同材料對電極的阻值比較 26
圖 二十二 氧化鋅結構示意圖 27
圖 二十三 PVP添加量對水熱後ZnO型態的影響 28
圖 二十四 Zn在不同酸鹼環境下的離子態 29
圖 二十五 微波水熱環境酸鹼值對ZnO型態的影響 29
圖 二十六 太陽光譜圖 30
圖 二十七 硫化鉛製程流程圖 35
圖 二十八 氧化鋅包覆奈米銀絲核殼結構製程流程圖 37
圖 二十九 PbS/PVA粉體XRD分析,垂直線為PbS標準繞射鋒 38
圖 三十 TEM分析PbS量子點晶格距離 39
圖 三十一 以3.15ml/min進料速度生成之流化鉛粒徑成雙分布 39
圖 三十二 不同粒徑硫化鉛量子點和陽極材料(a)TiO2和(b)ZnO的能階關係圖 40
圖 三十三 不同重量濃度PVA所合成出的硫化鉛量子點粒徑大小 41
圖 三十四 最適化後硫化鉛量子點製程 41
圖 三十五 最適化製程硫化鉛量子點吸收光譜分析 41
圖 三十六 最適化製程硫化鉛量子點TEM分析 42
圖 三十七 以TEM計算水相量子點粒徑分布圖(N%) 43
圖 三十八 去除硫化鉛量子點溶液系統中PVA的方法流程圖 43
圖 三十九 轉相過程 (a)水相與油相分層(b)攪拌後成為均相溶液 (c)以離心機破乳化(d)油相量子點 45
圖 四十 量子點轉相示意圖 (a)油酸鈉吸附於量子點表面 (b)量子點被油酸鈉所形成之微胞包覆 (c)油水分相後,量子點懸浮於油相中 45
圖 四十一 依不同Pentanol體積濃度作轉相率分析 46
圖 四十二 乳化三相圖 46
圖 四十三 轉相前(DI)、轉相後(hexane)與轉相後再以甲醇清洗之硫化鉛量子點吸收光譜分析 47
圖 四十四 TEM分析經轉相處理後PbS量子點粒徑大小(左)低倍率(右)高倍率 49
圖 四十五 以TEM計算油相量子點粒徑分布圖(N%) 49
圖 四十六 轉相前(DI)、轉相後(hexane)與轉相後再以甲醇清洗之硫化鉛量子點吸收光譜分析 50
圖 四十七 轉相後再以甲醇清洗之硫化鉛量子點螢光光譜分析 50
圖 四十九 元件中各層材料的能階位置和元件示意圖 51
圖 五十 經熱處理(黑方塊)與未熱處理(紅圓圈)之電池I-V曲線比較 52
圖 五十一 元件效率分析 52
圖 五十二 (a)浸泡設備(b)浸泡後基板正面(c)浸泡後基板背面 52
圖 五十三 TiO2基板浸泡(a)水溶液與(b)Hexane後基板顏色觀察 53
圖 五十四 銀絲SEM照片 54
圖 五十五 銀絲TEM照片 54
圖 五十六 PVP吸附於銀絲表面水熱後生成ZnO殼層示意圖 55
圖 五十七 Ag@ZnO nanowire XRD分析, 為ZnO繞射鋒, 為Ag繞射鋒 55
圖 五十八 以SEM和TEM分析不同鋅前驅物濃度與奈米銀線莫耳比之核殼結構型態觀察 56
圖 五十九 ZnO和Ag (a) {100}(b)面{111}面的晶格常數配對情形(c) ZnO的wurtzite結構 57
圖 六十 氧化鋅包覆銀絲於量子點敏化太陽能電池之能階示意圖 58


表目錄
表 一 近年來QDSSCs所使用量子點與陽極材料 4
表 二 各式太陽能電池效率 7
表 三 近年來效率超過2%的量子點敏化太陽能電池整理 8
表 四 PVA水相硫化鉛量子點製程文獻整理 17
表 五 硫化鉛量子點敏化太陽電池效率整理 25
表 六 不同粒徑硫化鉛量子點特徵吸收峰的位置 42
表 七 溶液的物理性質整理 44

Abel, K. A.; Shan, J.; Boyer, J.-C.; Harris, F.; van Veggel, F. C. J. M., "Highly Photoluminescent PbS Nanocrystals: The Beneficial Effect of Trioctylphosphine". Chem Mater 20, 3794-3796(2008)

Altria, K. D., "Background theory and applications of microemulsion electrokinetic chromatography". J Chromatogr A 892, 171-186(2000)

Asunskis, D. J.; Hanley, L., "Valence band and core level X-ray photoelectron spectroscopy of lead sulfide nanoparticle-polymer composites". Surf Sci 601, 4648-4656(2007)

Baik, S. J.; Kim, K.; Lim, K. S.; Jung, S.; Park, Y. C.; Han, D. G.; Lim, S.; Yoo, S.; Jeong, S., "Low-Temperature Annealing for Highly Conductive Lead Chalcogenide Quantum Dot Solids". J Phys Chem C 115, 607-612(2011)

Beard, M. C.; Gao, J. B.; Luther, J. M.; Semonin, O. E.; Ellingson, R. J.; Nozik, A. J., "Quantum Dot Size Dependent J-V Characteristics in Heterojunction ZnO/PbS Quantum Dot Solar Cells". Nano Lett 11, 1002-1008(2011)

Bhattacharya, A.; Ray, P., "Studies on surface tension of poly(vinyl alcohol): Effect of concentration, temperature, and addition of chaotropic agents". J Appl Polym Sci 93, 122-130(2004)

Braga, A.; Gimenez, S.; Concina, I.; Vomiero, A.; Mora-Sero, I., "Panchromatic Sensitized Solar Cells Based on Metal Sulfide Quantum Dots Grown Directly on Nanostructured TiO2 Electrodes". J Phys Chem Lett 2, 454-460(2011)

Carrott, P. J. M.; Carrott, M. M. L. R.; Nabais, J. M. V.; Ramalho, J. P. P., "Influence of surface ionization on the adsorption of aqueous zinc species by activated carbons". Carbon 35, 403-410(1997)

Chen, S.; Liu, W. M., "Oleic acid capped PbS nanoparticles: Synthesis, characterization and tribological properties". Mater Chem Phys 98, 183-189(2006)

Fan, F.-R.; Ding, Y.; Liu, D.-Y.; Tian, Z.-Q.; Wang, Z. L., "Facet-Selective Epitaxial Growth of Heterogeneous Nanostructures of Semiconductor and Metal: ZnO Nanorods on Ag Nanocrystals". Journal of the American Chemical Society 131, 12036-12037(2009)

Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Eychmüller, A.; Weller, H., "Efficient Phase Transfer of Luminescent Thiol-Capped Nanocrystals:  From Water to Nonpolar Organic Solvents". Nano Lett 2, 803-806(2002)

Gimenez, S.; Lana-Villarreal, T.; Gomez, R.; Agouram, S.; Munoz-Sanjose, V.; Mora-Sero, I., "Determination of limiting factors of photovoltaic efficiency in quantum dot sensitized solar cells: Correlation between cell performance and structural properties". J Appl Phys 108, 064310(2010)

Gopal Ram, S.; Anbu Kulandainathan, M.; Ravi, G., "On the study of pH effects in the microwave enhanced rapid synthesis of nano-ZnO". Applied Physics A: Materials Science & Processing 99, 197-203(2010)

Gratzel, M., "Photoelectrochemical cells". Nature 414, 338-344(2001)

Guchhait, A.; Rath, A. K.; Pal, A. J., "To make polymer: Quantum dot hybrid solar cells NIR-active by increasing diameter of PbS nanoparticles". Sol Energ Mat Sol C 95, 651-656(2011)

Guldi, D. M.; Marczak, R. M., R.; Werner, F.; Ahmad, R.; Lobaz, V.; Peukert, W., "Detailed Investigations of ZnO Photoelectrodes Preparation for Dye Sensitized Solar Cells". Langmuir 27, 3920-3929(2011)

Hines, M. A.; Scholes, G. D., "Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution". Adv Mater 15, 1844-1849(2003)

Hirai, H.; Aizawa, H., "Preparation of Stable Dispersions of Colloidal Gold in Hexanes by Phase Transfer". J Colloid Interf Sci 161, 471-474(1993)

Hirai, H.; Aizawa, H.; Shiozaki, H., "Preparation of Nonaqueous Dispersion of Colloidal Silver by Phase-Transfer". Chem Lett, 1527-1530(1992)

Hyun, B. R.; Bartnik, A. C.; Sun, L. F.; Hanrath, T.; Wise, F. W., "Control of Electron Transfer from Lead-Salt Nanocrystals to TiO2". Nano Lett 11, 2126-2132(2011)

Hyun, B.-R.; Zhong, Y.-W.; Bartnik, A. C.; Sun, L.; Abruña, H. D.; Wise, F. W.; Goodreau, J. D.; Matthews, J. R.; Leslie, T. M.; Borrelli, N. F., "Electron Injection from Colloidal PbS Quantum Dots into Titanium Dioxide Nanoparticles". Acs Nano 2, 2206-2212(2008)

King, L. A.; Riley, D. J., "Importance of QD Purification Procedure on Surface Adsorbance of QDs and Performance of QD Sensitized Photoanodes". J Phys Chem C 116, 3349-3355(2012)

Kuljanin, J.; Comor, M. I.; Djokovic, V.; Nedeljkovic, J. M., "Synthesis and characterization of nanocomposite of polyvinyl alcohol and lead sulfide nanoparticles". Mater Chem Phys 95, 67-71(2006)

Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D., "Nanowire dye-sensitized solar cells". Nat Mater 4, 455-459(2005)

Lawrence, M. J.; Rees, G. D., "Microemulsion-based media as novel drug delivery systems". Adv Drug Deliver Rev 45, 89-121(2000)

Lee, H.; Leventis, H. C.; Moon, S.-J.; Chen, P.; Ito, S.; Haque, S. A.; Torres, T.; Nüesch, F.; Geiger, T.; Zakeeruddin, S. M.; Grätzel, M.; Nazeeruddin, M. K., "PbS and CdS Quantum Dot-Sensitized Solid-State Solar Cells: “Old Concepts, New Results”". Adv Funct Mater 19, 2735-2742(2009)

Lee, H.; Wang, M. K.; Chen, P.; Gamelin, D. R.; Zakeeruddin, S. M.; Gratzel, M.; Nazeeruddin, M. K., "Efficient CdSe Quantum Dot-Sensitized Solar Cells Prepared by an Improved Successive Ionic Layer Adsorption and Reaction Process". Nano Lett 9, 4221-4227(2009)

Lee, H. J.; Bang, J.; Park, J.; Kim, S.; Park, S. M., "Multilayered Semiconductor (CdS/CdSe/ZnS)-Sensitized TiO(2) Mesoporous Solar Cells: All Prepared by Successive Ionic Layer Adsorption and Reaction Processes". Chem Mater 22, 5636-5643(2010)

Lee, H. J.; Yum, J.-H.; Leventis, H. C.; Zakeeruddin, S. M.; Haque, S. A.; Chen, P.; Seok, S. I.; Grätzel, M.; Nazeeruddin, M. K., "CdSe Quantum Dot-Sensitized Solar Cells Exceeding Efficiency 1% at Full-Sun Intensity". The Journal of Physical Chemistry C 112, 11600-11608(2008)

Lee, Y. L.; Chang, C. H., "Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells". J Power Sources 185, 584-588(2008)

Lee, Y. L.; Lo, Y. S., "Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe". Adv Funct Mater 19, 604-609(2009)

Leventis, H. C.; O'Mahony, F.; Akhtar, J.; Afzaal, M.; O'Brien, P.; Haque, S. A., "Transient Optical Studies of Interfacial Charge Transfer at Nanostructured Metal Oxide/PbS Quantum Dot/Organic Hole Conductor Heterojunctions". Journal of the American Chemical Society 132, 2743-2750(2010)

Lin, W.; Fritz, K.; Guerin, G.; Bardajee, G. R.; Hinds, S.; Sukhovatkin, V.; Sargent, E. H.; Scholes, G. D.; Winnik, M. A., "Highly Luminescent Lead Sulfide Nanocrystals in Organic Solvents and Water through Ligand Exchange with Poly(acrylic acid)". Langmuir 24, 8215-8219(2008)

Lin, X. M.; Sorensen, C. M.; Klabunde, K. J., "Digestive Ripening, Nanophase Segregation and Superlattice Formation in Gold Nanocrystal Colloids". J Nanopart Res 2, 157-164(2000)

Liu, J. C.; Ruffini, N.; Pollot, P.; Llopis-Mestre, V.; Dilek, C.; Eckert, C. A.; Liotta, C. L.; Roberts, C. B., "More Benign Synthesis of Palladium Nanoparticles in Dimethyl Sulfoxide and Their Extraction into an Organic Phase". Ind Eng Chem Res 49, 8174-8179(2010)

Luther, J. M.; Gao, J. B.; Lloyd, M. T.; Semonin, O. E.; Beard, M. C.; Nozik, A. J., "Stability Assessment on a 3% Bilayer PbS/ZnO Quantum Dot Heterojunction Solar Cell". Adv Mater 22, 3704-3707(2010)

Nenadovic, M. T.; Comor, M. I.; Vasic, V.; Micic, O. I., "Transient bleaching of small lead sulfide colloids: influence of surface properties". The Journal of Physical Chemistry 94, 6390-6396(1990)

Nozik, A. J., "Exciton Multiplication and Relaxation Dynamics in Quantum Dots:  Applications to Ultrahigh-Efficiency Solar Photon Conversion†". Inorg Chem 44, 6893-6899(2005)

Pattantyus-Abraham, A. G.; Kramer, I. J.; Barkhouse, A. R.; Wang, X.; Konstantatos, G.; Debnath, R.; Levina, L.; Raabe, I.; Nazeeruddin, M. K.; Grätzel, M.; Sargent, E. H., "Depleted-Heterojunction Colloidal Quantum Dot Solar Cells". Acs Nano 4, 3374-3380(2010)

Pendyala, N. B.; Koteswara Rao, K. S. R., "Efficient Hg and Ag ion detection with luminescent PbS quantum dots grown in poly vinyl alcohol and capped with mercaptoethanol". Colloids and Surfaces A: Physicochemical and Engineering Aspects 339, 43-47(2009)

Podlogar, F.; Rogac, M. B.; Gagperlin, M., "The effect of internal structure of selected water-Tween 40 (R)-Imwitor 308 (R)-IPM microemulsions on ketoprofene release". Int J Pharm 302, 68-77(2005)

Popov, A. P.; Priezzhev, A. V.; Lademann, J.; Myllyla, R., "TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens". J Phys D Appl Phys 38, 2564-2570(2005)

Rees, G. D.; Robinson, B. H., "Microemulsions and organogels: Properties and novel applications". Adv Mater 5, 608-619(1993)

Ruhle, S.; Shalom, M.; Zaban, A., "Quantum-Dot-Sensitized Solar Cells". Chemphyschem 11, 2290-2304(2010)

Sargent, E. H.; Klem, E. J. D.; Shukla, H.; Hinds, S.; MacNeil, D. D.; Levina, L., "Impact of dithiol treatment and air annealing on the conductivity, mobility, and hole density in PbS colloidal quantum dot solids". Appl Phys Lett 92, 212105(2008)

Seol, M.; Kim, H.; Tak, Y.; Yong, K., "Novel nanowire array based highly efficient quantum dot sensitized solar cell". Chemical Communications 46, 5521-5523(2010)

Tamang, S.; Beaune, G.; Poillot, C.; De Waard, M.; Texier-Nogues, I.; Reiss, P., "Compact and highly stable quantum dots through optimized aqueous phase transfer". Colloidal Quantum Dots/Nanocrystals for Biomedical Applications Vi 7909, 79091B(2011)

Tefashe, U. M.; Nonomura, K.; Vlachopoulos, N.; Hagfeldt, A.; Wittstock, G., "Effect of Cation on Dye Regeneration Kinetics of N719-Sensitized TiO2 Films in Acetonitrile-Based and Ionic-Liquid-Based Electrolytes Investigated by Scanning Electrochemical Microscopy". J Phys Chem C 116, 4316-4323(2012)

Vandamme, T. F., "Microemulsions as ocular drug delivery systems: recent developments and future challenges". Prog Retin Eye Res 21, 15-34(2002)

Wadia, C.; Alivisatos, A. P.; Kammen, D. M., "Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment". Environ Sci Technol 43, 2072-2077(2009)

Wang, C. L.; Shen, E. H.; Wang, E. B.; Gao, L.; Kang, Z. K.; Tian, C. G.; Lan, Y.; Zhang, C., "Controllable synthesis of ZnO nanocrystals via a surfactant-assisted alcohol thermal process at a low temperature". Mater Lett 59, 2867-2871(2005)

Wong, D. K.-P.; Ku, C.-H.; Chen, Y.-R.; Chen, G.-R.; Wu, J.-J., "Enhancing Electron Collection Efficiency and Effective Diffusion Length in Dye-Sensitized Solar Cells". Chemphyschem 10, 2698-2702(2009)

Wu, S. X.; Zeng, H. X.; Schelly, Z. A., "Preparation of ultrasmall, uncapped PbS quantum dots via electroporation of vesicles". Langmuir 21, 686-691(2005)

Yahya, G. O.; Ali, S. K. A.; Hamad, E. Z., "Surface and interfacial activities of hydrophobically modified poly(vinyl alcohol) (PVA)". Polymer 37, 1183-1188(1996)

Yang, Z.; Chen, C.-Y.; Roy, P.; Chang, H.-T., "Quantum dot-sensitized solar cells incorporating nanomaterials". Chemical Communications 47, 9561-9571(2011)

Yu, W. W.; Peng, X., "Formation of High-Quality CdS and Other II–VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers". Angewandte Chemie International Edition 41, 2368-2371(2002)

Zaban, A.; Tachan, Z.; Shalom, M.; Hod, I.; Ruhle, S.; Tirosh, S., "PbS as a Highly Catalytic Counter Electrode for Polysulfide-Based Quantum Dot Solar Cells". J Phys Chem C 115, 6162-6166(2011)

Zhang, J. H.; Liu, H. Y.; Wang, Z. L.; Ming, N. B., "Low-temperature growth of ZnO with controllable shapes and band gaps". J Cryst Growth 310, 2848-2853(2008)

Zhao, P.; Zhang, H.; Zhou, H.; Yi, B., "Nickel foam and carbon felt applications for sodium polysulfide/bromine redox flow battery electrodes". Electrochim Acta 51, 1091-1098(2005)

Zheng, Y.; Zheng, L.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K., "Ag/ZnO Heterostructure Nanocrystals:  Synthesis, Characterization, and Photocatalysis". Inorg Chem 46, 6980-6986(2007)

Zylstra, J.; Amey, J.; Miska, N. J.; Pang, L. S.; Hine, C. R.; Langer, J.; Doyle, R. P.; Maye, M. M., "A Modular Phase Transfer and Ligand Exchange Protocol for Quantum Dots". Langmuir 27, 4371-4379(2011)

盧育杰,「溶液相法合成奈米銀及半導體量子點之研究與應用」,國立清華大學化學工程學系博士論文(2010)

張雅欣,「奈米級銀粒子與銀絲於量子點及透明導電塗層之應用研究」,國立清華大學化學工程學系碩士論文(2011)

Polymer data handbook,Copyright © 1999 by Oxford University Press, Inc.

蔡信行主著,聚合物化學,289-294頁,新文京開發出版股份有限公司,新北市中和區中山路二段362號9樓

杜逸虹著,聚合體學,30-34頁,三民書局股份有限公司,台北市復興北路386號

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊