跳到主要內容

臺灣博碩士論文加值系統

(18.206.76.226) 您好!臺灣時間:2021/07/30 23:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許哲瑋
研究生(外文):Hsu, Che-wei
論文名稱:電子軟銲Sn-In-Ag合金液相線投影圖及其與Cu, Ni 之界面反應
論文名稱(外文):Liquidus projection of Sn-In-Ag electronic solders and their interfacial reactions with Cu, Ni substrates
指導教授:陳信文陳信文引用關係
指導教授(外文):Chen, Sinn-wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:106
中文關鍵詞:無鉛銲料介金屬相液相線投影圖Sn-20wt.%In-2.8wt.%Ag
外文關鍵詞:Sn-In-Ag solder
相關次數:
  • 被引用被引用:1
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對電子軟銲中的Sn-In-Ag三元系統,以實驗方法進行液相線投影圖的建構及Sn-20wt%In-2.8wt%Ag商用合金對Cu, Ni基材的界面反應觀察。
在Sn-20wt%In-2.8wt%Ag/Cu的界面反應部分,在250℃的液/固反應中,界面先生成扇貝狀的Cu6Sn5相,而隨反應時間增加後,開始有層狀的Cu3Sn相在Cu6Sn5相與Cu基材間生成,且由動力學分析得知,Cu6Sn5相的生長趨勢符合parabolic growth kinetic,而Cu3Sn相的生長趨勢較接近為linear kinetic。
而在固/固反應中,在100℃與150℃熱處理下界面只生成Cu6Sn5相,而在較低溫的100℃下,其生成相並無隨時間而有明顯增厚的現象,反而在靠近界面的銲料端生成許多塊狀的Cu6Sn5相;而在較高溫的150℃下,界面的Cu6Sn5相厚度與t1/2呈線性正比的關係,並可知反應為擴散控制。
在Sn-20wt%In-2.8wt%Ag/Ni的界面反應部分,在100℃熱處理1440小時,界面生成厚度約10μm 的Ni3Sn4相;而在150℃下,介金屬相的生長情形隨熱處理時間而變化,在反應剛開始時,生成散佈微小顆粒的層狀Liquid+Ni3Sn4相。隨熱處理時間拉長,部分界面處開始產生塊狀的Ni3Sn4相,且在介金屬相中也可觀察到小塊的Ni3Sn4相散佈其中。最後,介金屬相完全轉變為緻密且均勻的Ni3Sn4相。而推測介金屬相變化的原因,應該是Ni與Sn的反應較慢,使剛開始的生成相含有較高比例的Sn與In,而Ni的含量隨熱處理時間增加,便逐漸生成為Ni3Sn4相。
在本研究之液相線投影圖中,共配置了18個合金組成,以金相分析及XRD繞射圖譜比對的實驗方法,確定了Sn-In-Ag三元合金之液相線投影圖中的(βSn)、γ、Ag2In、ζ及Ag3Sn的相區。

摘要 l
目錄 ll
圖目錄 V
表目錄 X
第一章 前言 1
第二章 文獻回顧 5
2-1 相平衡 5
2-1-1 Sn-In二元相平衡 5
2-1-2 Sn-Ag二元相平衡 6
2-1-3 Ag-In 二元相平衡 7
2-1-4 Sn-In-Ag 三元相平衡 9
2-1-5 Sn-In-Cu 三原相平衡 15
2-1-6 Sn-In-Ni 三原相平衡 18
2-2 液相線投影圖 21
2-2-1 Sn-In-Ag液相線投影圖 21
2-3 界面反應 23
2-3-1 Sn-Ag/Cu界面反應 23
2-3-2 Sn-In/Cu界面反應 24
2-3-3 Sn-In-Ag/Cu界面反應 25
2-3-4 Sn-Ag/Ni界面反應 26
2-3-5 Sn-In/Ni界面反應 27
2-3-6 Sn-In-Ag/Ni界面反應 27


第三章 實驗方法 28
3-1 界面反應 28
3-1-1 銲料配製 28
3-1-2 反應偶製備 28
3-1-3 樣品分析 29
3-2 液相線投影圖 30
3-2-1 合金配製 30
3-2-2 樣品熱分析 30
3-2-2 樣品分析 30
第四章 結果與討論 31
4-1 界面反應 31
4-1-1 Sn-20wt%In-2.8wt%Ag/Cu
在250℃下之液/固界面反應 31
4-1-2 Sn-20wt%In-2.8wt%Ag/Cu
在100℃下之固/固界面反應 43
4-1-3 Sn-20wt%In-2.8wt%Ag/Cu
在150℃下之固/固界面反應 51
4-1-4 Sn-20wt%In-2.8wt%Ag/Ni
在100℃下之固/固界面反應 60
4-1-5 Sn-20wt%In-2.8wt%Ag/Ni
在100℃下之固/固界面反應 67


4-2 液相線投影圖 78
4-2-1 (βSn)相區 81
4-2-2 γ相區 84
4-2-3 Ag2In相區 87
4-2-4 ζ相區 89
4-2-5 Ag3Sn相區 96
第五章 結論 99
第六章 参考文獻 100



























[1] 陳信文、陳立軒、林永森、陳志銘,電子構裝技術與材料,pp.31-35,高
立圖書有限公司,台北縣 (2005)。
[2] 陳信文、陳立軒、林永森、陳志銘,電子構裝技術與材料,pp.133-146,
高立圖書有限公司,台北縣 (2005)。
[3] R. J. Wassink, Soldering in Eelectronics, Electrochemical Pub. Ltd., p.99,
(1984).
[4] J. H. Lau, “Overview and outlook of through-silicon via (TSV) and 3D integrations”, Microelectronics International, 28(2), p.8–22, (2011).
[5] Official journal of the European Union, 46(13), L 37/19~L 37/23, (2003).
[6] Lead-Free Soldering Roadmap Committee, Technical Standardization
Committee on Electronics Assembly Technology JEITA, official version
21, (2002).
[7] S. E. Negm, H. Mady, A. A. Bahgat,” Influence of the addition of indium on the mechanical creep of Sn–3.5%Ag alloy”, Journal of Alloys and Compounds, 503, p.65–70, (2010).
[8] M. S. Yeh,” Effects of indium on the mechanical properties of ternary Sn-In-Ag solders”, Metallurgical and Materials Transactions A, 34A, p.361-365, (2003).
[9] K. Sakuma, P. S. Andry, B. Dang, J. Maria,” 3D chip stacking technology with low volume lead free interconnections”, Electronic Components and Technology Conference, p.627-632, (2007).
[10] T. Fukushima, Y. Yamada, H. Kikuchi, T. Tanaka, and M. Koyanagi,” Self-Assembly Process for Chip-to-Wafer Three-Dimensional Integration”, Electronic Components and Technology Conference, p.836-841, (2007).
[11] W. K. Choi, D. Yu, C. Lee, L. Yan, A. Yu, S. W. Yoon, J. H. Lau,” Development of Low Temperature Bonding Using In-Based Solders”, Electronic Components and Technology Conference, p.1294-1299, (2008).
[12] N. David, K. E. Aissaoui, J.M. Fiorani, J. Hertz, M. Vilasi, ”Thermodynamic Optimization of the In-Pb-Sn System Based on New Evaluations of the binary Borders In-Pb and In-Sn”, Thermochimica Acta, 413, p.127–137, (2004).
[13] H. Okamoto, Journal of Phase Equilibria and Diffusion, “Supplemental Literature Review: Section III”, 27(3), p.313, (2006).
[14] C. H. Yeh, L. S. Chang, B. Straumal, “Study on the Solidus Line in Sn-Rich Region of Sn-In Phase Diagram”, Journal of Phase Equilibria and Diffusion, 30(3), p.254-257, (2009).
[15] I. Karakaya, W. T. Thompson, Bulletin of Alloy Phase Diagrams, 8(4),
p.340-347, (1987).
[16] U. R. Kattner, W. J. Boettinger, “On the Sn-Bi-Ag Ternary Phase Diagram”, Journal of Electronic Materials, 23(7), p.603-610, (1994).
[17] M. R. Baren, Indium Alloys and their Engineering Applications, ed. C.E.T. White and H. Okamoto, Materials Park, OH: ASM International, p.15-19,
(1993).
[18] Z. Moser, W. Gasior, J. Pstrus, W. Zakulski, I. Ohnuma, X. J. Liu, Y.
Inohana, K. Ishida, “Studies of the Ag-In Phase Diagram and Surface Tension Measurements” Journal of Electronic Materials, 30(9), p.1120-1128, (2001).
[19] T. M. Korhonen, J. K. Kivilahti, “Thermodynamics of the Sn-In-Ag Solder System”, Journal of Electronic Materials, 27(3), p.149-158, (1998).
[20] I. Ohnuma, Y. Cui, X. J. Liu, Y. Inohana, S. Ishihara, H. Ohtani, R.
Kainuma, K. Ishida, “Phase equilibria of Sn-In Based Micro-Soldering Alloys”, Journal of Electronic Materials, 29(10), p.1113-1121,(2000).
[21] X. J. Liu, Y. Inohana, Y. Takaku, I. Ohnuma, R. Kainuma, K. Ishida, Z.
Moser, W. Gasior, J. Pstrus, “Experimental Determination and Thermodynamic Calculation of the Phase Equilibria and Surface Tension in the Sn-In-Ag System”, Journal of Electronic Materials, 31(11), p.1139-1151, (2002).
[22] G. P. Vassilev , E. S. Dobrev , J. C. Tedenac, “Experimental study of the Ag-Sn-In phase diagram”, Journal of Alloys and Compounds, 399, p.118–125, (2005).
[23] A. Milosavljevic, D. Zivkovic, D. Manasijevic, N. Talijan, V. Cosovic, A.
Grujic, B. Marjanovic, “Phase diagram investigation and characterization of ternary Sn-In-Me (Me= Ag, Cu) lead-free solder systems”, International Journal of Materials and Product Technology, 39, p.95-107, (2010).
[24] S. W. Chen, W. Y. Lee, C. M. Hsu, C. F. Yang, H. Y. Hsu, H. J. Wu, “Sn–In–Ag phase equilibria and Sn–In–(Ag)/Ag interfacial reactions”, Materials Chemistry and Physics, 128, p.357–364, (2011).
[25] X. J. Liu, H. S. Liu, I. Ohnuma, R. Kainuma, K. Ishida, S. Itabashi, K.
Kameda, K. Yamaguchi, “Experimental Determination and Thermodynamic Calculation of the Phase Equilibria in the Cu-In-Sn System”, Journal of Electronic Materials, 30(9), p.1093-1103, (2001).
[26] S. K. Lin, T. Y. Chung, S. W. Chen, C. H. Chang, “250℃ isothermal section of ternary Sn-In-Cu phase equilibria”, Journal of Materials
Research, 24(8), p.2628-2637, (2009).
[27] M. K. Bhargava, K. Schubert, “Nickel-Indium-Tin System”, Zeitschrift of Metallkunde, 67(5), p.318-322, (1976).
[28] S. K. Shadangi, M. Singh, S. C. Panda, S. Bhan, “Structural studies on Ni-Sn-In ternary system”, Indian Journal of Technology, 24(2), p.105-107, (1986).
[29] C. Y. Huang, S. W. Chen, “Interfacial reactions in In-Sn/Ni couples and phase equilibria of the In-Sn-Ni system”, Journal of Electronic Materials, 31(2), p.152-160, (2002).
[30] L. Snugovsky, P. Snugovsky, D. D. Perovic, J. W. Rutter, “Formation of microstructure in Ag–In–Sn solder alloys”, Materials Science and Technology, 23(4), p.432-437, (2007).
[31] W. Yang, L. E. Felton, R. W. Messler, “The effect of soldering process variables on the microstructures and mechanical properties of eutectic Sn-Ag/Cu solder joints”, Journal of Electronic Materials, 24(10), p.1465-1472, (1995).
[32] G. J. S. Chou,” Microstructure evolution of SnPb and SnAg/Cu BGA solder joints during thermal aging”, Advanced Packaging Materials, p.39-46, (2002).
[33] J. W. Yoon, C. B. Lee, D. Y. Kim, S. B. Jung,” Reaction Diffusions of Cu6Sn5 and Cu3Sn Intermetallic Compound in the Couple of Sn-3.5Ag Eutectic Solder and Copper Substrate”, Metals and Materials International, 9(2), p.193-199, (2003).
[34] A. Sharif, Y. C. Chan, “Comparative Study of Interfacial Reactions of Sn-Ag-Cu and Sn-Ag Solders on Cu Pads during Reflow Soldering”, Journal of Electronic Materials, 34(1), p.46-52, (2005).
[35] C. C. Chi, T. H. Chuang, “Intermetallic Reactions in Sn-3.5Ag Solder Ball Grid Array Packages with Ag/Cu and Au/Ni/Cu Pads”, Journal of Electronic Materials, 35(3), p.471-478, (2006).
[36] P. T. Vianco, P. F. Hlava, A. C. Kilgo, “Inrermetallic Compound Layer Formation Between Copper and Hot-Dipped 100In,50In-50Sn,100Sn, and 63Sn-37Pb Coatings”, Journal of Electronic Materials, 23(7), p.583-594, (1994).
[37] T. H. Chuang, C. L. Yu, S. Y. Chang, S. S. Wang, “Phase Identification and Growth Kinetics of the Intermetallic Compounds Formed during In-49Sn/Cu Soldering Reactions”, Journal of Electronic Materials, 31(6), p.640-645, (2002).
[38] S. Sommadossi, W. Gust, E. J. Mittemeijer, “Characterization of the reaction process in diffusion-soldered Cu/In–48 at.% Sn/Cu joints”, Materials Chemistry and Physics, 77, p.924-929 (2002).
[39] D. G. Kim, S. B. Jung, “Interfacial reactions and growth kinetics for intermetallic compound layer between In–48Sn solder and bare Cu substrate”, Journal of Alloys and Compounds, 386, p.151-156, (2005).
[40] S. K. Lin, S. W. Chen, “Interfacial reactions in the Sn-20at.% In/Cu and Sn-20at.%In/Ni couples at 160℃”, Journal of Materials Research, 21(7), p,1712-1717, (2006).
[41] W. A. Sasangka, C. L. Gan, C. V. Thompson, W. K. Choi, J. Wei, ”Influence of bonding parameters on the interaction between Cu and Noneutectic Sn-In solder thin films”, Journal of Electronic Materials, 40(11), p.2329-2336, (2011).
[42] H. M. Wu, F. C. Wu, T. H. Chuang, “Intermetallic Reactions in a Sn-20In-2.8Ag Solder Ball-Grid-Array Package with Au/Ni/Cu Pads”, Journal of Electronic Materials, 34(11), p.1385-1390, (2005).
[43] C. C. Jain, S. S. Wang, K. W. Huang, T. H. Chuang, “Intermetallic Compounds Formed in Sn-20In-2.8Ag Solder BGA Packages with Ag/Cu Pads”, Journal of Materials Engineering and Performance, 18(2), p.211-215, (2009).
[44] J. Chen, J. Shen, W. Xie, H. Liu, “Intermetallic reactions in a Sn-3.5Ag-1.5In solder ball-grid-array package with Au/Ni/Cu pads”, Journal of Materials Science:Materials in Electronic, 22(11), p.1703-1708, (2011).
[45] D. L. Wang, Y. Yuan, L. Luo, ”Liquid-solid interfacial reactions of Sn-Ag and Sn-Ag-In solders with Cu under bump metallization”, Journal of Materials Science:Materials in Electronic, 23, p.61-67, (2012).
[46] H. D. Blair, T. Y. Pan, J. M. Nicholson, “Intermetallic compound growth on Ni, Au/Ni, and Pd/Ni substrates with Sn/Pb, Sn/Ag, and Sn solders”, Electronic Components and Technology Conference, p.259-267, (1998).
[47] W. K. Choi, H. M. Lee, ”Effect of Ni layer thickness and soldering time on intermetallic compound formation at the interface between molten Sn-3.5Ag and Ni/Cu substrate”, Journal of Electronic Materials, 28(11), p.1251-1255, (1999).
[48] C. M. Chen, S. W. Chen, “Electromigration effect upon the Sn-0.7 wt% Cu/Ni and Sn-3.5 wt% Ag/Ni interfacial reactions”, Journal of Applied Physics, 90(3), p.1208-1214, (2001).
[49] H. F. Hsu, S. W. Chen, “Phase equilibria of the Sn-Ag-Ni ternary system and interfacial reactions at the Sn-Ag/Ni joints”, Acta Materialia, 52, p.2541-2547, (2004).
[50] C. Y. Huang, S.W. Chen, “Interfacial reactions in In-Sn/Ni couples and phase equilibria of the In-Sn-Ni system”, Journal of Electronic Materials, 31(2), p.152-160, (2002).

[51] T. H. Chuang, K. W. Huang, W. H. Lin, “Mechanisms for the intermetallic formation during the Sn-20In-2.8Ag/Ni soldering reactions”, Journal of Electronic Materials, 34(4), p.374-381, (2004).
[52] S. K. Seo, M. G. Cho, H. M. Lee, W. K. Choi, ”Comparison of Sn2.8Ag20In and Sn10Bi10In solders for intermediate-step soldering”, Journal of Electronic Materials, 35(11), p.1975-1981, (2006).
[53] Z. Mei, A. J. Sunwoo, J. W. Morris," Analysis of low-temperature intermetallic growth in copper-tin diffusion couples”, Journal of Metallurgical Transactions A, 23(3), p.857-864, (1992).
[54] D. Ma, W. D. Wang, S. K. Lahiri,” Scallop formation and dissolution of
Cu–Sn intermetallic compound during solder reflow”, Journal of Applied
Physics, 91(5), p.3312-3317, (2002).
[55] M. Mita, M. Kajihara, N. Kurokawa, K. Sakamoto,” Growth behavior of Ni3Sn4 layer during reactive diffusion between Ni and Sn at solid-state temperatures”, Materials Science and Engineering A, 403, p.269-275, (2005).
[56] S. Bader, W. Gust, H. Hieber,” Rapid formation of intermetallic compounds by interdiffusion in the Cu-Sn and Ni-Sn systems”, Acta Metallurgical et Materialia, 43(1), p.329-337, (1995).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top