|
References 1.Steen, K.; Steen, A.; Reeh, P., A dominant role of acid pH in inflammatory excitation and sensitization of nociceptors in rat skin, in vitro. The Journal of Neuroscience 1995, 15 (5), 3982-3989. 2.Kim, S.; Park, H.; Song, Y.; Hong, D.; Kim, O.; Jo, E.; Khang, G.; Lee, D., Reduction of oxidative stress by p-hydroxybenzyl alcohol-containing biodegradable polyoxalate nanoparticulate antioxidant. Biomaterials 2011, 32 (11), 3021-3029. 3.Simon, H. U.; Haj-Yehia, A.; Levi-Schaffer, F., Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 2000, 5 (5), 415-418. 4.Kirkinezos, I. G.; Moraes, C. T., Reactive oxygen species and mitochondrial diseases. Seminars in Cell &; Developmental Biology 2001, 12 (6), 449-457. 5.Lee, H.; Lee, K.; Kim, I.-K.; Park, T. G., Fluorescent Gold Nanoprobe Sensitive to Intracellular Reactive Oxygen Species. Advanced Functional Materials 2009, 19 (12), 1884-1890. 6.Kim, S.; Seong, K.; Kim, O.; Kim, S.; Seo, H.; Lee, M.; Khang, G.; Lee, D., Polyoxalate Nanoparticles as a Biodegradable and Biocompatible Drug Delivery Vehicle. Biomacromolecules 2010, 11 (3), 555-560. 7.Aggarwal, B. B.; Sung, B., Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends in Pharmacological Sciences 2009, 30 (2), 85-94. 8.Hatcher, H.; Planalp, R.; Cho, J.; Torti, F.; Torti, S., Curcumin: From ancient medicine to current clinical trials. Cellular and Molecular Life Sciences 2008, 65 (11), 1631-1652. 9.Jagetia, G.; Aggarwal, B., “Spicing Up” of the Immune System by Curcumin. Journal of Clinical Immunology 2007, 27 (1), 19-35. 10.Sahu, A.; Kasoju, N.; Bora, U., Fluorescence Study of the Curcumin−Casein Micelle Complexation and Its Application as a Drug Nanocarrier to Cancer Cells. Biomacromolecules 2008, 9 (10), 2905-2912. 11.Yang, S. C.; Bhide, M.; Crispe, I. N.; Pierce, R. H.; Murthy, N., Polyketal Copolymers: A New Acid-Sensitive Delivery Vehicle for Treating Acute Inflammatory Diseases. Bioconjugate Chemistry 2008, 19 (6), 1164-1169. 12.Yoshitomi, T.; Suzuki, R.; Mamiya, T.; Matsui, H.; Hirayama, A.; Nagasaki, Y., pH-Sensitive Radical-Containing-Nanoparticle (RNP) for the L-Band-EPR Imaging of Low pH Circumstances. Bioconjugate Chemistry 2009, 20 (9), 1792-1798. 13.Choi, S.-W.; Zhang, Y.; Xia, Y., A Temperature-Sensitive Drug Release System Based on Phase-Change Materials. Angewandte Chemie International Edition 2010, 49 (43), 7904-7908. 14.Roos, A.; Klee, D.; Schuermann, K.; Höcker, H., Development of a temperature sensitive drug release system for polymeric implant devices. Biomaterials 2003, 24 (24), 4417-4423. 15.Wilson, D. S.; Dalmasso, G.; Wang, L.; Sitaraman, S. V.; Merlin, D.; Murthy, N., Orally delivered thioketal nanoparticles loaded with TNF-alpha-siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater 2010, 9 (11), 923-928. 16. Broaders, K. E.; Grandhe, S.; Fréchet, J. M. J., A Biocompatible Oxidation-Triggered Carrier Polymer with Potential in Therapeutics. Journal of the American Chemical Society 2011, 133 (4), 756-758. 17.Rehor, A.; Hubbell, J. A.; Tirelli, N., Oxidation-Sensitive Polymeric Nanoparticles. Langmuir 2005, 21 (1), 411-417. 18.Mahmoud, E. A.; Sankaranarayanan, J.; Morachis, J. M.; Kim, G.; Almutairi, A., Inflammation Responsive Logic Gate Nanoparticles for the Delivery of Proteins. Bioconjugate Chemistry 2011, 22 (7), 1416-1421. 19.Jeong, S.; Choi, S. Y.; Park, J.; Seo, J.-H.; Park, J.; Cho, K.; Joo, S.-W.; Lee, S. Y., Low-toxicity chitosan gold nanoparticles for small hairpin RNA delivery in human lung adenocarcinoma cells. Journal of Materials Chemistry 2011, 21 (36), 13853-13859. 20.Montembault, A.; Viton, C.; Domard, A., Rheometric Study of the Gelation of Chitosan in Aqueous Solution without Cross-Linking Agent. Biomacromolecules 2005, 6 (2), 653-662. 21.Chiu, Y.-L.; Chen, S.-C.; Su, C.-J.; Hsiao, C.-W.; Chen, Y.-M.; Chen, H.-L.; Sung, H.-W., pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: In vitro characteristics and in vivo biocompatibility. Biomaterials 2009, 30 (28), 4877-4888. 22.Shukla, A. K.; Verma, M.; Singh, K. N., Superoxide Induced Deprotection of 1,3-Dithiolanes: A Convenient Method of Dedithioacetalization. ChemInform 2004, 35 (49), 1748-1752. 23.Jares-Erijman, E. A.; Jovin, T. M., FRET imaging. Nat Biotech 2003, 21 (11), 1387-1395. 24.Lee, S.; Park, K.; Kim, K.; Choi, K.; Kwon, I. C., Activatable imaging probes with amplified fluorescent signals. Chemical Communications 2008, (36), 4250-4260. 25.Roy, R.; Hohng, S.; Ha, T., A practical guide to single-molecule FRET. Nat Meth 2008, 5 (6), 507-516. 26.Medintz, I. L.; Clapp, A. R.; Mattoussi, H.; Goldman, E. R.; Fisher, B.; Mauro, J. M., Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater 2003, 2 (9), 630-638. 27.Chen, K.-J.; Chiu, Y.-L.; Chen, Y.-M.; Ho, Y.-C.; Sung, H.-W., Intracellularly monitoring/imaging the release of doxorubicin from pH-responsive nanoparticles using Förster resonance energy transfer. Biomaterials 2011, 32 (10), 2586-2592. 28.Chiu, Y.-L.; Chen, S.-A.; Chen, J.-H.; Chen, K.-J.; Chen, H.-L.; Sung, H.-W., A Dual-Emission Förster Resonance Energy Transfer Nanoprobe for Sensing/Imaging pH Changes in the Biological Environment. ACS Nano 2010, 4 (12), 7467-7474. 29.Nelson MT, H. W., Gursoy A, Dalke A, Kale LV, Skeel RD, et al. , NAMD: a parallel, object oriented molecular dynamics program. Int J Supercomput Appl High Perform Comput 1996, 10, 251-268. 30.Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M., CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry 1983, 4 (2), 187-217. 31.Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E., UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry 2004, 25 (13), 1605-1612. 32.Lide DR, F. H., CRC handbook of chemistry and physics, vol 8. Boca Raton: CRC Press 1995, 45-46.
|