跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/06 07:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳建寬
研究生(外文):Wu, Jian Kuan
論文名稱:水相中快速合成出由八面體演繹至立方體硫化鉛奈米晶體 以及其不同形狀的排列結構研究
論文名稱(外文):Fast Synthesis of PbS Nanocrystals in Aqueous Solution with Shape Evolution from Cubic to Octahedral Structures and Their Assembled Structures
指導教授:黃暄益
指導教授(外文):Huang, Hsuan-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
論文頁數:54
中文關鍵詞:硫化鉛形狀演變形貌排列
外文關鍵詞:PbSshape evolutionmorphologyassembly
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
半導體奈米粒子時常是在有機相中及高溫下反應。如果能將奈米粒子的合成在水相中進行,則可以減少能量的消耗及能達到綠色化學的效果。根據文獻得知,若想要在水相中合成硫化鉛奈米晶體,則至少需要加熱12小時到24小時,而我們的實驗目的則是要能有效縮短反應時間且達到一系列的形狀變化。
在本次實驗中,我們在水相的環境中利用植晶方法,經由二次成核的方式長成硫化鉛奈米粒晶體,整個反應時間約2個半小時,合成的奈米粒子其大小範圍則介於30至60奈米之間。除此之外,可藉由硫代乙烯胺濃度從0.05 M至0.025 M的調整,使硫化鉛奈米晶體的形狀從立方體可以逐漸轉變成八面體。至於立方體及八面體的奈米粒子分別是由{100}和{111}晶面所組成的,而立方八面體是{100}和{111}晶面所組成的,經由粉末X-ray繞射的鑑定得知合成出的奈米晶體為硫化鉛,且其不同的形狀可得到具有擇優取向的訊號。此外藉由TEM選區電子繞射鑑定也可以做材料鑑定和得知奈米晶體的晶面。
除此之外,從SEM上還發現到截角立方體及八面體個別具有不同的單層與多層的排列情形,並藉由粉末X-ray繞射鑑定不同排列情形造成的擇優取向繞射圖。

Semiconductor nanoparticles are often synthesized in organic solvents with the use of high reaction temperatures. If nanoparticles can be synthesized in aqueous phase, it should reduce the energy cost and the process is more environmentally friendly. According to the literature, PbS nanocrystals are usually synthesized in organic solvents. When they are prepared in aqueous solutions, the reaction mixtures can frequently be heated for 12–24 hours.
In this study, we have developed a seeding growth method to synthesize PbS nanocrystals in aqueous solution. The method involves addition of a small volume of preheated lead acetate and thioacetamide (TAA) mixture to an aqueous growth solution of lead acetate, thioacetamide, cetyltrimethylammonium bromide, and nitric acid. By varying the amount of thioacetamide added to the growth solution, PbS nanocrystals with different morphologies were generated in 2 h at 90 ºC. The PbS nanocrystals have sizes of 30–60 nm. Transmission electron microscopy (TEM), powder X-ray diffraction (PXRD) patterns, and scanning electron microscopy (SEM) have been employed to characterize the nanocrystals. Nanocube sizes can also be tuned within a range. UV–vis absorption spectra of PbS cubes, cuboctahedra, and octahedra all show decreasing but continuous absorption from 300 nm to beyond 1000 nm. By monitoring the speed of darkening of solution color, particle growth rate was found to be fastest for nanocubes, followed by truncated cubes, cuboctahedra, and octahedra. The production of different particle morphologies of PbS nanocrystals is linked to their reaction rates. Lowering the concentration of TAA in the reaction mixture can retard the reaction rate, and this favors the formation of octahedra.
These monodisperse nanocrystals can readily form self-assembled structures. Truncated cubes and octahedra forming monolayer and multilayer packing arrangements have been studied. PXRD was used to confirm these assembled structures. Intensities of certain peaks in the PXRD patterns are enhanced due to preferred orientations of the nanocrystal packing structures.

TABLE OF CONTENTS
Abstract of the Thesis i
Table of Contents iv
List of Figures vi
List of Schemes ix

Chapter 1
Introduction to the Synthesis of Lead Chalcogenide Nanocrystals with Shape Evolution
1.1 Introduction to shape–controlled synthesis of nanocrystals 1
1.2 Synthesis of lead chalcogenide nanocrystals with well-defined shapes 8
1.3 Insights from the synthesis of lead sulfide nanocrystals in aqueous solution with systematic shape evolution 14
1.4 References 23




Chapter 2
Fast Synthesis of PbS Nanocrystals in Aqueous Solution with Shape Evolution from Cubic to Octahedral Structures and Their Assembled Structures
2.1 Introduction 26
2.2 Expermental Section 28
2.2.1 Chemicals 28
2.2.2 Synthesis of PbS nanocrystals with shape evolution 28
2.2.3 Synthesis of truncated octahedral PbS nanocrystals 29
2.2.4 Synthesis of PbS nanocubes with size control 30
2.2.5 Formation of ordered PbS nanocrystal assembly 32
2.2.6 Instrumentation 32
2.3 Results and Discussion 33
2.4 Conclusion 53
2.5 References 54
LIST OF FIGURES
Chapter 1
Introduction to the Synthesis of Lead Chalcogenide Nanocrystals with Shape Evolution
Figure 1.1 SEM images of the gold nanocrystals 2
Figure 1.2 SEM images of the gold nanocrystals by adding KI 3
Figure 1.3 SEM images of the silver nanocrystals 4
Figure 1.4 SEM images of the Ag2O crystals 5
Figure 1.5 SEM images of the Cu2O nanocrystals with morphology evolution from cubes to rhombic dodecahedra 6
Figure 1.6 SEM images of polyhedral palladium nanocrystals 7
Figure 1.7 SEM images of PbSe rods, octahedra and cubes 10
Figure 1.8 TEM images of PbS, PbSe and PbTe nanocrystals 11
Figure 1.9 SEM images of PbSe microcrystals 12
Figure 1.10 TEM image Three different shapes of PbTe nanocrystals 13
Figure 1.11 TEM images of the PbS nanostructures obtained under various reaction temperatures 15
Figure 1.12 SEM images of truncated PbS nanocubes 16
Figure 1.13 TEM images of PbS nanocrystals 17
Figure 1.14 Illustration of the electrode position processes for PbS crystal 19
Figure 1.15 The shape evolution of PbS crystals 20
Figure 1.16 Time-dependent formation of star-shaped PbS crystals 21
Figure 1.17 SEM images of PbS crystals electrodeposited at different currents and PbCl2 concentrations 22
Chapter 2
Fast Synthesis of PbS Nanocrystals in Aqueous Solution with Shape Evolution from Cubic to Octahedral Structures and Their Assembled Structures
Figure 2.1 SEM and TEM images of PbS nanoparticles 27
Figure 2.2 SEM images of PbS nanocrystals from cubes to octahedra 35
Figure 2.3 Average PbS nanocrystal sizes and their standard deviations 36
Figure 2.4 XRD patterns of PbS nanocubes, cuboctahedra, and octahedra 38
Figure 2.5 TEM, HRTEM image and SAED patterns of PbS nanocubes 38
Figure 2.6 TEM, HRTEM image and SAED patterns of PbS cubeoctahedra 39
Figure 2.7 TEM, HRTEM image and SAED patterns of PbS octahedra 40
Figure 2.8 UV–vis absorption spectra of PbS nanocrystals 41
Figure 2.9 Photographs of sample A–D after 0.5 and 1 h of reaction 42
Figure 2.10 Photographs of samples A–D after 1.5 and 2 h of reaction 43
Figure 2.11 SEM images of PbS nanocubes with various size 44
Figure 2.12 SEM images of PbS truncated cubes with DI water 46
Figure 2.13 SEM images of the PbS truncated cubes with CTAB solution 47
Figure 2.14 XRD patterns and SEM images of PbS truncated cubes 50
Figure 2.15 From the monolayer to multilayer packing structures for truncated cubic PbS nanocrystals 51
Figure 2.16 XRD patterns and SEM images of PbS octahedra 52

LIST OF SCHEMES
Chapter 2
Fast Synthesis of PbS Nanocrystals in Aqueous Solution with Shape Evolution from Cubic to Octahedral Structures and Their Assembled Structures
Scheme 2.1 Schematic illustration of the proceudre and exact reaction conditions used in the synthesis of PbS nanocrystals with shape evolution from cubic to octahedral structures 30
Scheme 2.2 Schematic illustration of the experimental procedure and exact reaction conditions used in the synthesis of PbS nanocubes with tunable sizes 31



(1) Huang, M. H.; Lin, P.-H. Adv. Funct. Mater. 2012, 22, 14–24.
(2) Yang, P. Nature 2012, 482, 41–42.
(3) Huang, W.-C.; Lyu, L.-M.; Yan, Y.-C.; Huang, M. H. J. Am. Chem. Soc. 2012, 134, 1261–1267.
(4) Ho, J.-Y.; Huang, M. H. J. Phys. Chem. C 2009, 113, 14159–14164.
(5) Lyu, L.-M.; Wang, W.-C.; Huang, M. H. Chem.–Eur. J. 2010, 16, 14167–14174.
(6) Tao, A.; Sinsermsuksakul, P.; Yang, P. Angew. Chem. Int. Ed. 2006, 45, 4597–4601.
(7) Seo, D.; Park, J. C.; Song, H. J. Am. Chem. Soc. 2006, 128, 14863–14870.
(8) Wu, H.-L.; Kuo, C.-H.; Huang, M. H. Langmuir 2010, 26, 12307–12313.
(9) Chung, P.-J.; Lyu, L.-M.; Huang, M. H. Chem.–Eur. J. 2011, 17, 9746–9752.
(10) Kuo, C.-H.; Yang, Y.-C.; Gwo, S.; Huang, M. H. J. Am. Chem. Soc. 2011, 133, 1052–1057.
(11) Wu, H.-L.; Tsai, H.-R.; Hung, Y.-T.; Lao, K.-U.; Liao, C.-W.; Chung, P.-J.; Huang, J.-S.; Chen, I.-C.; Huang, M. H. Inorg. Chem. 2011, 50, 8106–8111.
(12) Niu,W. X.; Zhang, L.; Xu, G. B. ACS Nano 2010, 4, 1987–1996.
(13) Li, H.; Chen, D.; Li, L.; Tang, F.; Zhang L.; Ren, J. CrystEngComm 2010, 12, 1127–1133.
(14) Zhang, D.; Zhai, G.; Zhang, J.; Yuan, L.; Miao, X.; Zhu, Z.; Wang, Y. CrystEngComm 2010, 12, 3243–3248.
(15) Kibriya, A.; Mohammad, A.; Paul, O’Brien; Hua, G.; Woollins, J. D. Chem. Mater. 2010, 22, 4619–4624.
(16) Xu, J.; Zhang J.; Qian, J. Mater.Lett. 2010, 64, 771–774.
(17) Wang, Y.; Dai Q.; Zou B.; Yu, W. W.; Liu, B.; Zou, G. Langmuir 2010, 26, 19129–19135.
(18) Na, J. Y.; Kim H. S.; Park J. J. Phys. Chem. C. 2008, 112, 11218–11226.
(19) Jawaid, A. M.; Asunskis, J. D.; Snee, T. P. ACS Nano 2011, 5, 6465–6471.
(20) Bakshi, M. S.; Thakure, P.; Khullar, P.; Kaur, G.; Banipal T. S. Cryst. Growth Des. 2010, 10, 1813–1822.
(21) Mokari, T.; Zhang, M.; Yang P. J. Am. Chem. Soc. 2007, 129, 9864–9865.
(22) Bakshi, M. S.; Thakur, P.; Sachar, S.; Kaur, G.; Banipal, T. S.; Possmayer, F.; Peterson, N. O. J. Phys. Chem. C 2007, 111, 18087–18098.
(23) Peng, Z.; Jiang, Y.; Song, Y.; Wang, C.; Zhang, H. Chem. Mater. 2008, 20, 3153–3162.
(24) Wang, Y.; Dai, Q.; Yang, X.; Zou, B.; Li, D.; Liu, B.; Hu, M. Z.; Zou, G. CrystEngComm 2011, 13, 199–203.
(25) Zhou, G.; Lü, M.; Xiu, Z.; Wang, S.; Zhang, H.; Zhou, Y.; Wang, S. J. Phys. Chem. B 2006, 110, 6543–6548.
(26) Wang, Y.; Dai, Q.; Zou, B.; Yu, W. W.; Liu, B.; Zou, G. Langmuir 2010, 26, 19129–19135.
(27) Zhao, N.; Qi, L. Adv. Mater. 2006, 18, 359–362.
(28) Wang, N.; Cao, X.; Guo, L.; Yang, S.; Wu, Z. ACS Nano 2008, 2, 184–190.
(29) Zhao, Z.; Zhang, J.; Dong, F.; Yang, B. J. Colloid Interface Sci. 2011, 359, 351–358.
(30) Chen, F.; Qiu, W.; Chen, X.; Wang, M.; Chen, H. CrystEngComm 2010, 12, 1893–1898.
(31) Qiu, W.; Xu, M.; Chen, F.; Yang, X.; Nan, Y.; Chen, H. CrystEngComm 2011, 13, 4689–4694.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 具形態控制的氧化亞銅奈米晶體及氧化亞銅包金之核殼異質結構之合成及其物理與化學性質的探討
2. 在酸性及鹼性下製備高產率且可調控徑長比的金奈米棒和針對超長金奈米棒的改善合成方法
3. 一、立方體型態演繹至六足體之氧化銀奈米晶體的合成及其表面特性二、研究多截面金奈米晶粒核的形狀以及表面晶面對於形成氧化亞銅包金核殼異質結構的影響
4. 水熱法合成金奈米八面體與不同金屬離子對其形狀的影響
5. 以金奈米立方體製備二十四面體和凹面八面體之鈀包金核殼奈米結構與其高效率的電化學活性
6. SynthesisofSubmicron-SizedCu2OCrystalswithMorphologicalEvolutionfromCubictoHexapodStructuresandTheirComparativePhotocatalyticActivity
7. 高產量高長寬比金奈米棒的製備與多分支金奈米粒子的直接合成
8. 以植晶法製備長度可調之超長金奈米棒和奈米線
9. 一、水相合成具三分支結構的鈀奈米晶體及其催化活性;二、氧化亞銅奈米立方體與八面體和銅奈米粒子的製備
10. 用各種多面體奈米金粒子製備有序排列的超級晶體並觀察其形成過程
11. 以一鍋合成鈀奈米晶體─由八面體演繹至立方體
12. Octahedral Gold Nanocrystal-templated Growth of Au-Pd Core-Shell Heterostructures with Systematic Shape Evolution from Octahedral to Concave Cubic Structures and their Catalytic Activity
13. Seed-MediatedSynthesisofPalladiumNanorodsandBranchedNanocrystalsandTheirUseasRecyclableSuzukiCouplingReactionCatalysts
14. Seed-MediatedSynthesisofGoldNanocrystalswithSystematicShapeEvolutionfromCubictoRhombicDodecahedralStructures
15. 白金觸媒之製備與鈦釩鉻合金氫化特性及其在燃料電池應用之研究