跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/05 11:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪福信
研究生(外文):Hung, Fu-Hsin
論文名稱:Exploring the therapeutic approach of developing monoclonal antibodies for isotype-specific targeting of mIgA-expressing B cells
論文名稱(外文):探究用單株抗體來標的表現膜型免疫球蛋白A的B細胞的治療方策
指導教授:潘榮隆潘榮隆引用關係張子文張子文引用關係
指導教授(外文):Pan, Rong-LongChang, Tse-Wen
口試委員:潘榮隆張子文陳安劉士任馬徹
口試日期:2011-10-14
學位類別:博士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:英文
論文頁數:59
中文關鍵詞:單株抗體免疫球蛋白A膜鑲嵌型免疫球蛋白A
外文關鍵詞:monoclonal antibodiesIgAmembrane-bound IgA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:1
在人體中,免疫球蛋白A (IgA) 存在著兩種次類型,IgA1和IgA2,這兩種IgA同時存在著分泌型IgA (secretory IgA) 和膜鑲嵌型IgA (membrane-bound IgA, mIgA); mIgA是由兩條膜?捙 (m??nchain) 結合兩條?袺 (kappa chain) 或?傶 (lambda chain) 所組成,在mIgA的膜?捙錀端胜肽的構造中,包含有細胞外 (extracellular)、穿膜 (transmembrane)、和細胞內 (intracellular) 三種區段;在過去的研究發現,m??存在著兩種長度的異構型 (isoforms),長型的m?? (m??L) 在膜?捙鴘慢H3區域 (domain) 和穿膜區段之間,比短型 (m??S) 多出6個胺基酸殘基,序列為GSCSVA。透過研究三十個捐血者的周邊血液淋巴球(peripheral blood lymphocytes)的染色體DNA和mRNA的定序比對,我們發現了一條m??的對偶基因 (allele),這條新的對偶基因會產生兩個不同構型的m??,和原對偶基因存在的兩種異構型相似,長異構型比短異構型多出6個胺基酸,序列為GSCCVA。新發現的對偶基因與原對偶基因的差異在第456號胺基酸,因此這兩個對偶基因分別命名為m??(456C)與m??(456S)。此外,從m??的DNA序列分析得知,m??只有以短型的異構型出現。
由於分泌型IgA的?捙鴩S有這段膜鑲嵌胜肽片段的存在,且這條胜肽片段在胺基酸序列上具有獨一性,因此我們提出這條mIgA的膜?捙錀端胜肽的細胞外片段 (稱為migis-?? 適合用來作為抗體標的表現mIgA的B細胞的抗原 (antigen),希望能藉由抗體來調控表現mIgA的B細胞的活性,例如抑殺B細胞或降低IgA的產量。在這份研究裡,我們發展出幾個能夠專一性地辨識migis-?悀軉q的單株抗體,例如抗體29C11;在酵素免疫法的分析顯示,這些抗體可以很強地結合至含有migis-?悀軉q的胜肽或重組蛋白;然而,使用流式細胞儀來研究抗體結合至B細胞表面的膜型免疫球蛋白A的情形時,我們發現這些抗體無法有效地結合膜型免疫球蛋白A;在使用除去膽固醇的藥物來破壞B細胞上的脂筏後,這些抗體便能夠強烈地結合至B細胞表面的膜型免疫球蛋白A;此外,免疫沉澱法分析的結果指出,當膜型免疫球蛋白A的B細胞被很強的清潔劑溶解後,如SDS,或是利用藥物將細胞膜上的脂筏破壞後,這些抗體便能夠結合膜型免疫球蛋白A並將其沉澱下來,然而在一般的條件下,如使用中性的detergents溶解去細胞或不使用藥物處理細胞,大部分的抗體都無法將B細胞上的膜型免疫球蛋白A沉澱下來。綜合以上的結果顯示,膜型免疫球蛋白A的migis-?悀軉q在B細胞上會與脂筏結合,這樣的結合導致脂筏阻礙了辨識migis-?悛漣凗曀畢X至B細胞上的膜型免疫球蛋白A的能力。未來將發展高親和力的抗體29C11來增強標的表現膜型免疫球蛋白A的B細胞的能力與研究其發展的可行性。
In humans, secretory IgA exists as two subclasses, IgA1 and IgA2, which contain distinct ?? and ?? heavy chains, respectively. Both subclasses also have membrane-bound forms (mIgA1 and mIgA2) containing the corresponding m?? and m?? heavy chains, which differ from ?? and ?? by an additional “membrane-anchor” peptide segment extending from the CH3 domain of ?? and ??. The membrane-anchor segment has three parts: an extracellular, a transmembrane, and an intracellular segment. The heavy chain m?? exists in short and long isoforms, referred to as m??S and m??L, with the latter containing extra 6 amino acid residues, GSCSVA, at the N-terminus of the extracellular segment (residues 453-458). By studying the genomic and mRNA sequences of m?? and m?? from 30 individuals residing in Taiwan, we have found that, in addition to the known m?? allele, referred to as m??(456S), m?? also has a previously unknown allele, referred to as m??(456C) (GenBank accession no. EU431191). This newly identified allele is present in the donor population at a similar proportion to m??(456S), and appears to exist only as the long isoform, i.e. m??L, rather than the short isoform, m??S. We also confirmed that m?? exists only as the short isoform.
Because the membrane-anchoring peptide segment which is only present on mIgA is unique in amino acid sequences we proposed that the extracellular segment, referred to as the mIg isotype-specific (migis-?? segment of m? could be a specific antigenic site suitable for isotype-specific targeting of mIgA-expressing B cells by antibodies. We rationalized that the migis-??specific antibodies could bind to, and in turn, regulate IgA-expressing B cells, by mechanisms such as inducing apoptosis or decreasing the production of IgA. In the study, we developed several anti-migis-? monoclonal antibodies (mAbs), such as mAb 29C11, specific to a segment towards the N-terminus of the 26 amino acid long migis-?? The mAbs bound strongly to synthetic peptides of migis-? and to various recombinant proteins containing migis-? as revealed by ELISA. On B cells, however, flow cytometric analysis suggested that these mAbs did not bind strongly to mIgA. After lipid rafts of B cells were disrupted by cholesterol extraction, the mAbs were able to bind strongly to the treated B cells. Moreover, immunoprecipitation analysis of these mAbs indicated that mIgA could only be pulled down by the mAbs when mIgA-expressing B cells were solubilized by strong detergents, such as sodium dodecyl sulfate (SDS), or when lipid rafts were disrupted. Together, these results suggest that the migis-? region of mIgA in the BCR is associated with lipid rafts, which hinder binding of migis-??specific antibodies to mIgA on the cell surface. Further studies are in progress to evaluate the suitability of 29C11 or its affinity-improved variants for targeting mIgA-expressing B cells.
中文摘要 I
Abstract II
中文摘要 I
Abstract II
誌謝 III
Chapter 1 Background and Significance 1
1. Biochemistry of membrane-bound Igs on B cell surfaces 1
2. Biological function of mIgA 3
3. IgA and IgA-mediated diseases 3
4. Significance of developing anti-migis-? mAbs 5
Chapter 2 Structural Design and Experimental Results 7
A. Alleles and isoforms of human membrane-bound IgA1
1. Cloning of m?? and m?? from mRNA of peripheral blood lymphocytes 7
2. Analyzing clones of PCR-amplified migis-?? and -?? from 30 individuals 8
3. Analysis of RNA splicing sites in the membrane exon of ? chain 9
4. RNA splicing in m?? and m?? gene-transfected cell lines 9
B. Preparing monoclonal antibodies specific for migis-? peptides
5. Generation of anti-migis-? mAbs 10
6. Examination of binding activity with migis-? on B cells 10
7. Assessing the relative affinity of anti-migis-? mAbs?n 11
8. Epitope mapping of mAbs using synthetic migis-? peptides 12
C. The Effects of membrane environments on antibodies binding to mIgA-expressing
B cells
9. Staining of M?毧D-treated B cell lines by anti-migis-? mAbs 13
10. Immunoprecipitation of mIgA on B cell lines 14
11. Diminished binding of 29C11 to cross-linked mIgA on B cell lines 16
12. Staining of mIgA-expressing B cells with peptide-immunized mouse antisera 16
Chapter 3 Discussion 18
1. The splicing efficiency among m? allelic variants 18
2. Binding properties of anti-migis-? mAbs 20
3. The influences of BCR environment on binding of anti-migis-? mAbs to mIgA 22
Chapter 4 Materials and Methods 25
1. Isolation of peripheral blood lymphocytes 25
2. RNA, cDNA and genomic DNA preparation 25
3. Amplification of m?? and m?? by PCR 25
4. Cloning and sequencing of PCR-amplified fragments 26
5. Cell lines and transfection 27
6. Western blotting analysis of membrane proteins 27
7. Antibodies 28
8. Expression and purification of recombinant proteins 28
9. Preparation and purification of mAbs 29
10. Generation of stable cell lines 30
11. Flow cytometry 31
12. Peptide synthesis 31
13. Biotinylation of mAb and ELISA 31
14. Disruption of lipid rafts by cholesterol extraction 32
15. Immunoprecipitation of mIgA by mAbs 32
Tables 34
Figures 37
References 53
Publications 59

References
1. Monroe JG. 2006. ITAM-mediated tonic signalling through pre-BCR and BCR complexes. Nat Rev Immunol 6: 283-94
2. Martensson IL, Keenan RA, Licence S. 2007. The pre-B-cell receptor. Curr Opin Immunol 19: 137-42
3. Niiro H, Clark EA. 2002. Regulation of B-cell fate by antigen-receptor signals. Nat Rev Immunol 2: 945-56
4. Tashita H, Fukao T, Kaneko H, Teramoto T, Inoue R, Kasahara K, Kondo N. 1998. Molecular basis of selective IgG2 deficiency. The mutated membrane-bound form of gamma2 heavy chain caused complete IGG2 deficiency in two Japanese siblings. J Clin Invest 101: 677-81
5. Akahori Y, Kurosawa Y. 1997. Nucleotide sequences of all the gamma gene loci of murine immunoglobulin heavy chains. Genomics 41: 100-4
6. Bensmana M, Lefranc MP. 1990. Gene segments encoding membrane domains of the human immunoglobulin gamma 3 and alpha chains. Immunogenetics 32: 321-30
7. White MB, Shen AL, Word CJ, Tucker PW, Blattner FR. 1985. Human immunoglobulin D: genomic sequence of the delta heavy chain. Science 228: 733-7
8. Peng C, Davis FM, Sun LK, Liou RS, Kim YW, Chang TW. 1992. A new isoform of human membrane-bound IgE. J Immunol 148: 129-36
9. Word CJ, White MB, Kuziel WA, Shen AL, Blattner FR, Tucker PW. 1989. The human immunoglobulin C mu-C delta locus: complete nucleotide sequence and structural analysis. Int Immunol 1: 296-309
10. Pogue SL, Goodnow CC. 1994. Ig heavy chain extracellular spacer confers unique glycosylation of the Mb-1 component of the B cell antigen receptor complex. J Immunol 152: 3925-34
11. Schamel WW, Reth M. 2000. Monomeric and oligomeric complexes of the B cell antigen receptor. Immunity 13: 5-14
12. Davis FM, Gossett LA, Chang TW. 1991. An epitope on membrane-bound but not secreted IgE: implications in isotype-specific regulation. Biotechnology (N Y) 9: 53-6
13. Major JG, Jr., Davis FM, Liou RS, Chang TW. 1996. Structural features of the extracellular portion of membrane-anchoring peptides on membrane-bound immunoglobulins. Mol Immunol 33: 179-87
14. Cogne M, Preud'homme JL. 1990. Gene deletions force nonsecretory alpha-chain disease plasma cells to produce membrane-form alpha-chain only. J Immunol 145: 2455-8
15. Yu LM, Peng C, Starnes SM, Liou RS, Chang TW. 1990. Two isoforms of human membrane-bound alpha Ig resulting from alternative mRNA splicing in the membrane segment. J Immunol 145: 3932-6
16. Batista FD, Anand S, Presani G, Efremov DG, Burrone OR. 1996. The two membrane isoforms of human IgE assemble into functionally distinct B cell antigen receptors. J Exp Med 184: 2197-205
17. Poggianella M, Bestagno M, Burrone OR. 2006. The extracellular membrane-proximal domain of human membrane IgE controls apoptotic signaling of the B cell receptor in the mature B cell line A20. J Immunol 177: 3597-605
18. Leduc I, Drouet M, Bodinier MC, Helal A, Cogne M. 1997. Membrane isoforms of human immunoglobulins of the A1 and A2 isotypes: structural and functional study. Immunology 90: 330-6
19. Bestagno M, Vangelista L, Mandiola PA, Mukherjee S, Sepulveda J, Burrone OR. 2001. Membrane immunoglobulins are stabilized by interchain disulfide bonds occurring within the extracellular membrane-proximal domain. Biochemistry 40: 10686-92
20. Delacroix DL, Dive C, Rambaud JC, Vaerman JP. 1982. IgA subclasses in various secretions and in serum. Immunology 47: 383-5
21. Cerutti A, Rescigno M. 2008. The biology of intestinal immunoglobulin A responses. Immunity 28: 740-50
22. van Egmond M, Damen CA, van Spriel AB, Vidarsson G, van Garderen E, van de Winkel JG. 2001. IgA and the IgA Fc receptor. Trends Immunol 22: 205-11
23. Woof JM, Kerr MA. 2006. The function of immunoglobulin A in immunity. J Pathol 208: 270-82
24. Fagarasan S, Honjo T. 2003. Intestinal IgA synthesis: regulation of front-line body defences. Nat Rev Immunol 3: 63-72
25. Wang N, Shen N, Vyse TJ, Anand V, Gunnarson I, Sturfelt G, Rantapaa-Dahlqvist S, Elvin K, Truedsson L, Andersson BA, Dahle C, Ortqvist E, Gregersen PK, Behrens TW, Hammarstrom L. 2011. Selective IgA deficiency in autoimmune diseases. Mol Med
26. Ballardie FW, Brenchley PE, Williams S, O'Donoghue DJ. 1988. Autoimmunity in IgA nephropathy. Lancet 2: 588-92
27. O'Donoghue DJ, Darvill A, Ballardie FW. 1991. Mesangial cell autoantigens in immunoglobulin A nephropathy and Henoch-Schonlein purpura. J Clin Invest 88: 1522-30
28. Donadio JV, Grande JP. 2002. IgA nephropathy. N Engl J Med 347: 738-48
29. Barratt J, Feehally J. 2005. IgA nephropathy. J Am Soc Nephrol 16: 2088-97
30. Galla JH. 1995. IgA nephropathy. Kidney Int 47: 377-87
31. Zhou FD, Zhao MH, Zou WZ, Liu G, Wang H. 2009. The changing spectrum of primary glomerular diseases within 15 years: a survey of 3331 patients in a single Chinese centre. Nephrol Dial Transplant 24: 870-6
32. Barratt J, Feehally J, Smith AC. 2004. Pathogenesis of IgA nephropathy. Semin Nephrol 24: 197-217
33. Novak J, Julian BA, Tomana M, Mestecky J. 2008. IgA glycosylation and IgA immune complexes in the pathogenesis of IgA nephropathy. Semin Nephrol 28: 78-87
34. Mestecky J, Tomana M, Moldoveanu Z, Julian BA, Suzuki H, Matousovic K, Renfrow MB, Novak L, Wyatt RJ, Novak J. 2008. Role of aberrant glycosylation of IgA1 molecules in the pathogenesis of IgA nephropathy. Kidney Blood Press Res 31: 29-37
35. Tanaka M, Seki G, Someya T, Nagata M, Fujita T. 2011. Aberrantly glycosylated IgA1 as a factor in the pathogenesis of IgA nephropathy. Clin Dev Immunol 2011: 470803
36. Tomana M, Novak J, Julian BA, Matousovic K, Konecny K, Mestecky J. 1999. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest 104: 73-81
37. Hiki Y, Odani H, Takahashi M, Yasuda Y, Nishimoto A, Iwase H, Shinzato T, Kobayashi Y, Maeda K. 2001. Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy. Kidney Int 59: 1077-85
38. Tomana M, Matousovic K, Julian BA, Radl J, Konecny K, Mestecky J. 1997. Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int 52: 509-16
39. Suzuki H, Fan R, Zhang Z, Brown R, Hall S, Julian BA, Chatham WW, Suzuki Y, Wyatt RJ, Moldoveanu Z, Lee JY, Robinson J, Tomana M, Tomino Y, Mestecky J, Novak J. 2009. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest 119: 1668-77
40. Novak J, Vu HL, Novak L, Julian BA, Mestecky J, Tomana M. 2002. Interactions of human mesangial cells with IgA and IgA-containing immune complexes. Kidney Int 62: 465-75
41. Lau KK, Wyatt RJ, Moldoveanu Z, Tomana M, Julian BA, Hogg RJ, Lee JY, Huang WQ, Mestecky J, Novak J. 2007. Serum levels of galactose-deficient IgA in children with IgA nephropathy and Henoch-Schonlein purpura. Pediatr Nephrol 22: 2067-72
42. Moldoveanu Z, Wyatt RJ, Lee JY, Tomana M, Julian BA, Mestecky J, Huang WQ, Anreddy SR, Hall S, Hastings MC, Lau KK, Cook WJ, Novak J. 2007. Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int 71: 1148-54
43. Chen HY, Liu FT, Hou CM, Huang JS, Sharma BB, Chang TW. 2002. Monoclonal antibodies against the C(epsilon)mX domain of human membrane-bound IgE and their potential use for targeting IgE-expressing B cells. Int Arch Allergy Immunol 128: 315-24
44. Feichtner S, Infuhr D, Achatz-Straussberger G, Schmid D, Karnowski A, Lamers M, Rhyner C, Crameri R, Achatz G. 2008. Targeting the extracellular membrane-proximal domain of membrane-bound IgE by passive immunization blocks IgE synthesis in vivo. J Immunol 180: 5499-505
45. Brightbill HD, Jeet S, Lin Z, Yan D, Zhou M, Tan M, Nguyen A, Yeh S, Delarosa D, Leong SR, Wong T, Chen Y, Ultsch M, Luis E, Ramani SR, Jackman J, Gonzalez L, Dennis MS, Chuntharapai A, DeForge L, Meng YG, Xu M, Eigenbrot C, Lee WP, Refino CJ, Balazs M, Wu LC. 2010. Antibodies specific for a segment of human membrane IgE deplete IgE-producing B cells in humanized mice. J Clin Invest 120: 2218-29
46. Chen JB, Wu PC, Hung AF, Chu CY, Tsai TF, Yu HM, Chang HY, Chang TW. 2010. Unique epitopes on C epsilon mX in IgE-B cell receptors are potentially applicable for targeting IgE-committed B cells. J Immunol 184: 1748-56
47. Cheng PC, Dykstra ML, Mitchell RN, Pierce SK. 1999. A role for lipid rafts in B cell antigen receptor signaling and antigen targeting. J Exp Med 190: 1549-60
48. Petrie RJ, Schnetkamp PP, Patel KD, Awasthi-Kalia M, Deans JP. 2000. Transient translocation of the B cell receptor and Src homology 2 domain-containing inositol phosphatase to lipid rafts: evidence toward a role in calcium regulation. J Immunol 165: 1220-7
49. Cheng PC, Brown BK, Song W, Pierce SK. 2001. Translocation of the B cell antigen receptor into lipid rafts reveals a novel step in signaling. J Immunol 166: 3693-701
50. Gupta N, DeFranco AL. 2003. Visualizing lipid raft dynamics and early signaling events during antigen receptor-mediated B-lymphocyte activation. Mol Biol Cell 14: 432-44
51. Flanagan JG, Lefranc MP, Rabbitts TH. 1984. Mechanisms of divergence and convergence of the human immunoglobulin alpha 1 and alpha 2 constant region gene sequences. Cell 36: 681-8
52. Pierce SK. 2002. Lipid rafts and B-cell activation. Nat Rev Immunol 2: 96-105
53. Dykstra M, Cherukuri A, Sohn HW, Tzeng SJ, Pierce SK. 2003. Location is everything: lipid rafts and immune cell signaling. Annu Rev Immunol 21: 457-81
54. Mielenz D, Vettermann C, Hampel M, Lang C, Avramidou A, Karas M, Jack HM. 2005. Lipid rafts associate with intracellular B cell receptors and exhibit a B cell stage-specific protein composition. J Immunol 174: 3508-17
55. Kabouridis PS, Janzen J, Magee AL, Ley SC. 2000. Cholesterol depletion disrupts lipid rafts and modulates the activity of multiple signaling pathways in T lymphocytes. Eur J Immunol 30: 954-63
56. Petrie RJ, Deans JP. 2002. Colocalization of the B cell receptor and CD20 followed by activation-dependent dissociation in distinct lipid rafts. J Immunol 169: 2886-91
57. Pike LJ. 2003. Lipid rafts: bringing order to chaos. J Lipid Res 44: 655-67
58. Fuentes-Panana EM, Bannish G, van der Voort D, King LB, Monroe JG. 2005. Ig alpha/Ig beta complexes generate signals for B cell development independent of selective plasma membrane compartmentalization. J Immunol 174: 1245-52
59. Gupta N, Wollscheid B, Watts JD, Scheer B, Aebersold R, DeFranco AL. 2006. Quantitative proteomic analysis of B cell lipid rafts reveals that ezrin regulates antigen receptor-mediated lipid raft dynamics. Nat Immunol 7: 625-33
60. Adam RM, Yang W, Di Vizio D, Mukhopadhyay NK, Steen H. 2008. Rapid preparation of nuclei-depleted detergent-resistant membrane fractions suitable for proteomics analysis. BMC Cell Biol 9: 30
61. Thyagarajan R, Arunkumar N, Song W. 2003. Polyvalent antigens stabilize B cell antigen receptor surface signaling microdomains. J Immunol 170: 6099-106
62. Peterson ML. 1994. Regulated immunoglobulin (Ig) RNA processing does not require specific cis-acting sequences: non-Ig RNA can be alternatively processed in B cells and plasma cells. Mol Cell Biol 14: 7891-8
63. Bruce SR, Dingle RW, Peterson ML. 2003. B-cell and plasma-cell splicing differences: a potential role in regulated immunoglobulin RNA processing. Rna 9: 1264-73
64. Coyle JH, Lebman DA. 2000. Correct immunoglobulin alpha mRNA processing depends on specific sequence in the C alpha 3-alpha M intron. J Immunol 164: 3659-65
65. Estes PA, Cooke NE, Liebhaber SA. 1992. A native RNA secondary structure controls alternative splice-site selection and generates two human growth hormone isoforms. J Biol Chem 267: 14902-8
66. Buratti E, Baralle FE. 2004. Influence of RNA secondary structure on the pre-mRNA splicing process. Mol Cell Biol 24: 10505-14
67. Cheng PC, Cherukuri A, Dykstra M, Malapati S, Sproul T, Chen MR, Pierce SK. 2001. Floating the raft hypothesis: the roles of lipid rafts in B cell antigen receptor function. Semin Immunol 13: 107-14
68. Gupta N, DeFranco AL. 2007. Lipid rafts and B cell signaling. Semin Cell Dev Biol 18: 616-26
69. Holder MJ, Chamba A, Hardie DL, Deans JP, Gordon J. 2004. Improved access to CD20 following B cell receptor cross-linking at Burkitt's lymphoma cell surfaces. Leuk Res 28: 1197-202
70. Li H, Ayer LM, Polyak MJ, Mutch CM, Petrie RJ, Gauthier L, Shariat N, Hendzel MJ, Shaw AR, Patel KD, Deans JP. 2004. The CD20 calcium channel is localized to microvilli and constitutively associated with membrane rafts: antibody binding increases the affinity of the association through an epitope-dependent cross-linking-independent mechanism. J Biol Chem 279: 19893-901
71. Polyak MJ, Li H, Shariat N, Deans JP. 2008. CD20 homo-oligomers physically associate with the B cell antigen receptor. Dissociation upon receptor engagement and recruitment of phosphoproteins and calmodulin-binding proteins. J Biol Chem 283: 18545-52
72. Matsuuchi L, Gold MR. 2001. New views of BCR structure and organization. Curr Opin Immunol 13: 270-7
73. Tolar P, Hanna J, Krueger PD, Pierce SK. 2009. The constant region of the membrane immunoglobulin mediates B cell-receptor clustering and signaling in response to membrane antigens. Immunity 30: 44-55
74. Liu W, Meckel T, Tolar P, Sohn HW, Pierce SK. 2010. Intrinsic properties of immunoglobulin IgG1 isotype-switched B cell receptors promote microclustering and the initiation of signaling. Immunity 32: 778-89
75. Yang J, Reth M. 2010. Oligomeric organization of the B-cell antigen receptor on resting cells. Nature 467: 465-9
76. Suzuki H, Moldoveanu Z, Hall S, Brown R, Vu HL, Novak L, Julian BA, Tomana M, Wyatt RJ, Edberg JC, Alarcon GS, Kimberly RP, Tomino Y, Mestecky J, Novak J. 2008. IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J Clin Invest 118: 629-39
77. Brandtzaeg P. 2010. Update on mucosal immunoglobulin A in gastrointestinal disease. Curr Opin Gastroenterol 26: 554-63
78. Sun X, Hia HC, Goh PE, Yap MG. 2008. High-density transient gene expression in suspension-adapted 293 EBNA1 cells. Biotechnol Bioeng 99: 108-16
79. Chintalacharuvu KR, Raines M, Morrison SL. 1994. Divergence of human alpha-chain constant region gene sequences. A novel recombinant alpha 2 gene. J Immunol 152: 5299-304
80. Liu YS, Low TL, Infante A, Putnam FW. 1976. Complete covalent structure of a human IgA1 immunoglobulin. Science 193: 1017-20
81. Breathnach R, Benoist C, O'Hare K, Gannon F, Chambon P. 1978. Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries. Proc Natl Acad Sci U S A 75: 4853-7

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top