|
1. Isolauri, E., et al., The allergy epidemic extends beyond the past few decades. Clin Exp Allergy, 2004. 34(7): p. 1007-10. 2. Gold, D.R. and R. Wright, Population disparities in asthma. Annu Rev Public Health, 2005. 26: p. 89-113. 3. Rafi, A., et al., Effects of omalizumab in patients with food allergy. Allergy Asthma Proc, 2010. 31(1): p. 76-83. 4. Lanier, B.Q., et al., Omalizumab is effective in the long-term control of severe allergic asthma. Ann Allergy Asthma Immunol, 2003. 91(2): p. 154-9. 5. Milgrom, H., et al., Treatment of allergic asthma with monoclonal anti-IgE antibody. rhuMAb-E25 Study Group. N Engl J Med, 1999. 341(26): p. 1966-73. 6. Holgate, S., et al., The anti-inflammatory effects of omalizumab confirm the central role of IgE in allergic inflammation. J Allergy Clin Immunol, 2005. 115(3): p. 459-65. 7. Chang, T.W., et al., Anti-IgE antibodies for the treatment of IgE-mediated allergic diseases. Adv Immunol, 2007. 93: p. 63-119. 8. Chang, T.W., The pharmacological basis of anti-IgE therapy. Nat Biotechnol, 2000. 18(2): p. 157-62. 9. Beck, L.A., et al., Omalizumab-induced reductions in mast cell Fce psilon RI expression and function. J Allergy Clin Immunol, 2004. 114(3): p. 527-30. 10. Chang, T.W. and Y.Y. Shiung, Anti-IgE as a mast cell-stabilizing therapeutic agent. J Allergy Clin Immunol, 2006. 117(6): p. 1203-12; quiz 1213. 11. Davis, F.M., et al., Can anti-IgE be used to treat allergy? Springer Semin Immunopathol, 1993. 15(1): p. 51-73. 12. Niiro, H. and E.A. Clark, Regulation of B-cell fate by antigen-receptor signals. Nat Rev Immunol, 2002. 2(12): p. 945-56. 13. Hart, T.K., et al., Preclinical efficacy and safety of pascolizumab (SB 240683): a humanized anti-interleukin-4 antibody with therapeutic potential in asthma. Clin Exp Immunol, 2002. 130(1): p. 93-100. 14. Stokes, J. and T.B. Casale, Rationale for new treatments aimed at IgE immunomodulation. Ann Allergy Asthma Immunol, 2004. 93(3): p. 212-7; quiz 217-9, 271. 15. Poole, J.A., et al., Anti-CD23 monoclonal antibody, lumiliximab, inhibited allergen-induced responses in antigen-presenting cells and T cells from atopic subjects. J Allergy Clin Immunol, 2005. 116(4): p. 780-8. 16. Bonnefoy, J.Y., J. Shields, and J.J. Mermod, Inhibition of human interleukin 4-induced IgE synthesis by a subset of anti-CD23/Fc epsilon RII monoclonal antibodies. Eur J Immunol, 1990. 20(1): p. 139-44. 17. Gould, H.J. and B.J. Sutton, IgE in allergy and asthma today. Nat Rev Immunol, 2008. 8(3): p. 205-17. 18. Conrad, D.H., et al., CD23: an overlooked regulator of allergic disease. Curr Allergy Asthma Rep, 2007. 7(5): p. 331-7. 19. Conrad, D.H., Fc epsilon RII/CD23: the low affinity receptor for IgE. Annu Rev Immunol, 1990. 8: p. 623-45. 20. Hibbert, R.G., et al., The structure of human CD23 and its interactions with IgE and CD21. J Exp Med, 2005. 202(6): p. 751-60. 21. Beavil, A.J., et al., Alpha-helical coiled-coil stalks in the low-affinity receptor for IgE (Fc epsilon RII/CD23) and related C-type lectins. Proc Natl Acad Sci U S A, 1992. 89(2): p. 753-7. 22. Lemieux, G.A., et al., The low affinity IgE receptor (CD23) is cleaved by the metalloproteinase ADAM10. J Biol Chem, 2007. 282(20): p. 14836-44. 23. Ford, J.W., et al., In vivo murine CD23 destabilization enhances CD23 shedding and IgE synthesis. Cell Immunol, 2006. 243(2): p. 107-17. 24. Yabuuchi, S., et al., Anti-CD23 monoclonal antibody inhibits germline Cepsilon transcription in B cells. Int Immunopharmacol, 2002. 2(4): p. 453-61. 25. Pathan, N.I., et al., Mediation of apoptosis by and antitumor activity of lumiliximab in chronic lymphocytic leukemia cells and CD23+ lymphoma cell lines. Blood, 2008. 111(3): p. 1594-602. 26. Rosenwasser, L.J., et al., Allergic asthma and an anti-CD23 mAb (IDEC-152): results of a phase I, single-dose, dose-escalating clinical trial. J Allergy Clin Immunol, 2003. 112(3): p. 563-70. 27. Byrd, J.C., et al., Phase 1 study of lumiliximab with detailed pharmacokinetic and pharmacodynamic measurements in patients with relapsed or refractory chronic lymphocytic leukemia. Clin Cancer Res, 2007. 13(15 Pt 1): p. 4448-55. 28. Chen, J.B., et al., Unique epitopes on C epsilon mX in IgE-B cell receptors are potentially applicable for targeting IgE-committed B cells. J Immunol, 2010. 184(4): p. 1748-56. 29. Wiegand, T.W., et al., High-affinity oligonucleotide ligands to human IgE inhibit binding to Fc epsilon receptor I. J Immunol, 1996. 157(1): p. 221-30. 30. Lanier, B., Unanswered clinical questions and speculation about the role of anti-immunoglobulin E in atopic and nonatopic disease. Allergy Asthma Proc, 2006. 27(2 Suppl 1): p. S37-42. 31. Holgate, S., et al., The use of omalizumab in the treatment of severe allergic asthma: A clinical experience update. Respir Med, 2009. 103(8): p. 1098-113. 32. Rosenwasser, L.J. and J. Meng, Anti-CD23. Clin Rev Allergy Immunol, 2005. 29(1): p. 61-72. 33. Nakamura, T., et al., In vitro IgE inhibition in B cells by anti-CD23 monoclonal antibodies is functionally dependent on the immunoglobulin Fc domain. Int J Immunopharmacol, 2000. 22(2): p. 131-41. 34. Griffith, Q.K., et al., CD23-bound IgE augments and dominates recall responses through human naive B cells. J Immunol, 2011. 186(2): p. 1060-7. 35. Chen, B.H., et al., Necessity of the stalk region for immunoglobulin E interaction with CD23. Immunology, 2002. 107(3): p. 373-81. 36. Chen, H.Y., et al., Monoclonal antibodies against the C(epsilon)mX domain of human membrane-bound IgE and their potential use for targeting IgE-expressing B cells. Int Arch Allergy Immunol, 2002. 128(4): p. 315-24. 37. Wan, T., et al., The crystal structure of IgE Fc reveals an asymmetrically bent conformation. Nat Immunol, 2002. 3(7): p. 681-6. 38. Garman, S.C., et al., Structure of the Fc fragment of human IgE bound to its high-affinity receptor Fc epsilonRI alpha. Nature, 2000. 406(6793): p. 259-66. 39. Sayers, I., et al., The importance of Lys-352 of human immunoglobulin E in FcepsilonRII/CD23 recognition. J Biol Chem, 2004. 279(34): p. 35320-5.
|