跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 17:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李倍慈
研究生(外文):Li, Pei-Tzu
論文名稱:小鼠b1,4-N-acetylgalactosaminyl transferase於子宮之生理功能探討
論文名稱(外文):The physiological role of mouse b1,4-N-acetylgalactosaminyl transferase in uterus
指導教授:吳文桂朱善德
指導教授(外文):Wu, Wen-GueyChu, Sin-Tak
學位類別:博士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:64
中文關鍵詞:子宮助孕酮胚胎著床囊胚
外文關鍵詞:b14-N-acetylgalactosaminyl transferaseB4galnt2progesteroneblastocystimplantation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
B4galnt2蛋白質(Sda β-1,4-N-acetylgalactosaminyltransferase II)為催化由UDP-GalNAc經由β-1,4鍵結將GalNAc連接至尾端為NeuAcα2-3之Gal的C4位置之轉醣酵素,此一過程為形成Sda/Cad抗原之反應決定步驟。過去研究已發現此一修飾會存在於pregnancy-associated glycoproteins (PAGs)、zona pellucida glycoprotein 3 (Zp-3)以及glycodelin(Gd)等表現於雌性生殖系統懷孕期之蛋白質上,推測此一結構在生殖系統中具有生理意義。經由小鼠in vivo、初級子宮內膜細胞培養in vitro以及啟動子reporter assay施以賀爾蒙處理之實驗結果,首次發現於子宮組織中,B4galnt2基因會受到助孕酮的正向調控,而動情素則抑制其表現。小鼠懷孕期間體內助孕酮濃度會隨之上升,因此3.5及10.5天可觀察到子宮組織中表現於細胞內之B4galnt2顯著增加。B4galnt2亦表現於E3.5之囊胚表面及囊胚細胞內,利用RNAi、B4galnt2抗體抑制實驗及具有辨認Sda抗原能力之植物凝集素DBA均可明顯對早期胚胎著床有抑制效果,說明位於囊胚細胞表面以及細胞內之B4galnt2均參與於早期胚胎著床過程。推測B4galnt2位於細胞內功能應為轉醣酵素職司後轉譯修飾Sda抗原於蛋白質或脂類之上,其及所催化形成之Sda抗原可能經由類似受器/配體的關係而達成促進並維持胚胎早期附著的重要功能。


Glycosylation is a fundamentally important modification in reproductive physiology, including embryo implantation. The B4galnt2 encodes an enzyme, the Sda β-1,4-N-acetylgalactosaminyltransferase II (β4GalNAcT-II, B4galnt2), which catalyzes the GalNAc linking to the Gal of the NeuAcα2-3Galβ terminal structure via the β-1,4 linkage and forms the sda antigen. In the reproductive system, sda antigen has been found in association with glycoproteins, which are specifically related with pregnancy, such as bovine pregnancy-associated glycoproteins (PAGs), zona pellucida glycoprotein 3 (Zp-3) and glycodelin (Gd). Via hormone treatment in vitro and promoter reporter assay, this study realized that B4galnt2 was positively regulated by progesterone (P4) and negatively regulated by estrogen (E2) in the uteri. These results coincided with in vivo observation. During pregnancy, B4galnt2 is significantly expressed on the intracellular portion of uterine tissue for high levels of P4 at E3.5 and E10.5. This study suggested that the uteri could provide Sda modified protein(s) or lipid(s) on the surface of uterine epithelia at these moments. Using siRNA assay to reduce the B4galnt2 expression in vivo, the reduction of embryonic numbers in uteri revealed the importance of this gene in embryo implantation and development. Furthermore, Bgalnt2 was found to locate on the surface and intracellular portion of E3.5 blastocysts, via confocal microscopy observation. The suppression of blastocyst adhesion by the anti-B4galnt2 antibody and lectin, Dolichos biflous agglutinin (DBA), in vitro and in vivo, was demonstrated by the involvement of B4galnt2 in embryonic early implantation. These results suggested that B4galnt2 on the blastocyst membrane surface may be associated with the sda antigen containing protein(s) or lipid(s) on the uterine epithelium. In addition, the sda antigen on the blastocyst membrane surface bound the receptor/acceptor on the endometrial surface to permit early embryo implantation jointly.
目錄

中文摘要………………………………………i
英文摘要………………………………………ii
謝辭……………………………………………iii


第一章 緒論……………………………………1
第二章 實驗材料與方法………………………6
第三章 結果…………………………………12
第四章 討論…………………………………17
圖…………………………………………………22
附圖………………………………………………42
附表………………………………………………50
參考文獻…………………………………………55

1. Renton PH, Howell P, Ikin EW, Giles CM, Goldsmit.Kl: Anti-Sda a New Blood Group Antibody. Vox Sang 1967, 13(6):493-501.
2. Macvie SI, Morton JA, Pickles MM: Reactions and Inheritance of a New Blood Group Antigen Sda. Vox Sang 1967, 13(6):485-492.
3. Morton JA, Pickles MM, Terry AM: The Sda blood group antigen in tissues and body fluids. Vox Sang 1970, 19(5):472-482.
4. Daniels G: Human blood groups. Oxford: Blackwell 2002.
5. Morton JA, Pickles MM, Vanhegan RI: The Sda antigen in the human kidney and colon. Immunol Invest 1988, 17(3):217-224.
6. Serafini-Cessi F, Dall'Olio F: Guinea-pig kidney beta-N-acetylgalactosaminyltransferase towards Tamm-Horsfall glycoprotein. Requirement of sialic acid in the acceptor for transferase activity. Biochem J 1983, 215(3):483-489.
7. Donald AS, Yates AD, Soh CP, Morgan WT, Watkins WM: A blood group Sda-active pentasaccharide isolated from Tamm-Horsfall urinary glycoprotein. Biochem Biophys Res Commun 1983, 115(2):625-631.
8. Blanchard D, Cartron JP, Fournet B, Montreuil J, van Halbeek H, Vliegenthart JF: Primary structure of the oligosaccharide determinant of blood group Cad specificity. J Biol Chem 1983, 258(12):7691-7695.
9. Lisowska E, Duk M: Red blood cell antigens responsible for inherited types of polyagglutination. Adv Exp Med Biol 2001, 491:141-153.
10. Miller DL, Jones CJ, Aplin JD, Nardo LG: Altered glycosylation in peri-implantation phase endometrium in women with stages III and IV endometriosis. Hum Reprod 2010, 25(2):406-411.
11. Serafini-Cessi F, Dall'Olio F, Malagolini N: Characterization of N-acetyl-beta-D-galactosaminyltransferase from guinea-pig kidney involved in the biosynthesis of Sda antigen associated with Tamm-Horsfall glycoprotein. Carbohydr Res 1986, 151:65-76.
12. Robbe C, Capon C, Maes E, Rousset M, Zweibaum A, Zanetta JP, Michalski JC: Evidence of regio-specific glycosylation in human intestinal mucins: presence of an acidic gradient along the intestinal tract. J Biol Chem 2003, 278(47):46337-46348.
13. Capon C, Maes E, Michalski JC, Leffler H, Kim YS: Sd(a)-antigen-like structures carried on core 3 are prominent features of glycans from the mucin of normal human descending colon. Biochem J 2001, 358(Pt 3):657-664.
14. Dell A: Murine and human zona pellucida 3 derived from mouse eggs express identical O-glycans. Proceedings of the National Academy of Sciences 2003, 100(26):15631-15636.
15. Kawamura YI, Kawashima R, Fukunaga R, Hirai K, Toyama-Sorimachi N, Tokuhara M, Shimizu T, Dohi T: Introduction of Sd(a) carbohydrate antigen in gastrointestinal cancer cells eliminates selectin ligands and inhibits metastasis. Cancer Res 2005, 65(14):6220-6227.
16. Dall'Olio F, Malagolini N, Di Stefano G, Ciambella M, Serafini-Cessi F: Postnatal development of rat colon epithelial cells is associated with changes in the expression of the beta 1,4-N-acetylgalactosaminyltransferase involved in the synthesis of Sda antigen of alpha 2,6-sialyltransferase activity towards N-acetyl-lactosamine. Biochem J 1990, 270(2):519-524.
17. Dall'Olio F, Malagolini N, Serafini-Cessi F: Tissue distribution and age-dependent expression of beta-4-N-acetylgalactosaminyl-transferase in guinea-pig. Biosci Rep 1987, 7(12):925-932.
18. Robbe-Masselot C, Maes E, Rousset M, Michalski J-C, Capon C: Glycosylation of human fetal mucins: a similar repertoire of O-glycans along the intestinal tract. Glycoconjugate Journal 2008, 26(4):397-413.
19. Malagolini N, Dall'Olio F, Di Stefano G, Minni F, Marrano D, Serafini-Cessi F: Expression of UDP-GalNAc:NeuAc alpha 2,3Gal beta-R beta 1,4(GalNAc to Gal) N-acetylgalactosaminyltransferase involved in the synthesis of Sda antigen in human large intestine and colorectal carcinomas. Cancer Res 1989, 49(23):6466-6470.
20. Dohi T, Hanai N, Yamaguchi K, Oshima M: Localization of UDP-GalNAc:NeuAc alpha 2,3Gal-R beta 1,4(GalNAc to Gal)N-acetylgalactosaminyltransferase in human stomach. Enzymatic synthesis of a fundic gland-specific ganglioside and GM2. J Biol Chem 1991, 266(35):24038-24043.
21. Dohi T, Nakasuji M, Oshima M: Induction of the fundic mucosa-specific glycolipid with dimethylformamide in gastric-cancer cell lines. Int J Cancer 1993, 53(1):137-140.
22. Dohi T, Yuyama Y, Natori Y, Smith PL, Lowe JB, Oshima M: Detection of N-acetylgalactosaminyltransferase mRNA which determines expression of Sda blood group carbohydrate structure in human gastrointestinal mucosa and cancer. Int J Cancer 1996, 67(5):626-631.
23. Malagolini N, Dall'Olio F, Serafini-Cessi F: UDP-GalNAc:NeuAc alpha 2,3Gal beta-R (GalNAc to Gal) beta 1,4-N-acetylgalactosaminyltransferase responsible for the Sda specificity in human colon carcinoma CaCo-2 cell line. Biochem Biophys Res Commun 1991, 180(2):681-686.
24. Wang HR, Hsieh CY, Twu YC, Yu LC: Expression of the Human Sda -1,4-N-Acetylgalactosaminyltransferase II Gene is Dependent on the Promoter Methylation Status. Glycobiology 2007, 18(1):104-113.
25. Smith PL, Lowe JB: Molecular cloning of a murine N-acetylgalactosamine transferase cDNA that determines expression of the T lymphocyte-specific CT oligosaccharide differentiation antigen. J Biol Chem 1994, 269(21):15162-15171.
26. Montiel MD, Krzewinski-Recchi MA, Delannoy P, Harduin-Lepers A: Molecular cloning, gene organization and expression of the human UDP-GalNAc:Neu5Acalpha2-3Galbeta-R beta1,4-N-acetylgalactosaminyltransferase responsible for the biosynthesis of the blood group Sda/Cad antigen: evidence for an unusual extended cytoplasmic domain. Biochem J 2003, 373(Pt 2):369-379.
27. Lo Presti L, Cabuy E, Chiricolo M, Dall'Olio F: Molecular cloning of the human beta1,4 N-acetylgalactosaminyltransferase responsible for the biosynthesis of the Sd(a) histo-blood group antigen: the sequence predicts a very long cytoplasmic domain. J Biochem 2003, 134(5):675-682.
28. Malagolini N, Santini D, Chiricolo M, Dall'Olio F: Biosynthesis and expression of the Sda and sialyl Lewis x antigens in normal and cancer colon. Glycobiology 2007, 17(7):688-697.
29. Stuckenholz C, Lu L, Thakur P, Kaminski N, Bahary N: FACS-assisted microarray profiling implicates novel genes and pathways in zebrafish gastrointestinal tract development. Gastroenterology 2009, 137(4):1321-1332.
30. Stuart D. Hoff YM, David M. Ota, Karen R. Cleary, Takao Yamori, Sen-itiroh Hakomori, and, Irimura T: Increased expression of sialyl-dimeric LeX antigen in liver metastases of human colorectal carcinoma. CANCER RESEARCH 1989, 49:6883–6888.
31. Nakayama T, Watanabe M, Katsumata T, Teramoto T, Kitajima M: Expression of sialyl Lewis(a) as a new prognostic factor for patients with advanced colorectal carcinoma. Cancer 1995, 75(8):2051-2056.
32. Futamura N, Nakamura S, Tatematsu M, Yamamura Y, Kannagi R, Hirose H: Clinicopathologic significance of sialyl Le(x) expression in advanced gastric carcinoma. Br J Cancer 2000, 83(12):1681-1687.
33. Walz G, Aruffo A, Kolanus W, Bevilacqua M, Seed B: Recognition by ELAM-1 of the sialyl-Lex determinant on myeloid and tumor cells. Science 1990, 250(4984):1132-1135.
34. Akiko Takada KO, Tomoya Yoneda, Kiyotaka Tsuyuoka, Akira Hasegawa, Makoto Kiso, and Reiji Kannagi Contribution of Carbohydrate Antigens Sialyl Lewis A and Sialyl Lewis X to Adhesion of Human Cancer Cells to Vascular Endothelium Cancer Res 1993, 53:354-361.
35. Takada A, Ohmori K, Yoneda T, Tsuyuoka K, Hasegawa A, Kiso M, Kannagi R: Contribution of carbohydrate antigens sialyl Lewis A and sialyl Lewis X to adhesion of human cancer cells to vascular endothelium. Cancer Res 1993, 53(2):354-361.
36. Phillips ML, Nudelman E, Gaeta FC, Perez M, Singhal AK, Hakomori S, Paulson JC: ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex. Science 1990, 250(4984):1130-1132.
37. Dohi T, Kawamura YI: Incomplete synthesis of the Sda/Cad blood group carbohydrate in gastrointestinal cancer. Biochim Biophys Acta 2008, 1780(3):467-471.
38. Ma B, Simala-Grant JL, Taylor DE: Fucosylation in prokaryotes and eukaryotes. Glycobiology 2006, 16(12):158R-184R.
39. Klisch K, Jeanrond E, Pang PC, Pich A, Schuler G, Dantzer V, Kowalewski MP, Dell A: A tetraantennary glycan with bisecting N-acetylglucosamine and the Sd(a) antigen is the predominant N-glycan on bovine pregnancy-associated glycoproteins. Glycobiology 2008, 18(1):42-52.
40. Uhlen M, Bjorling E, Agaton C, Szigyarto CA, Amini B, Andersen E, Andersson AC, Angelidou P, Asplund A, Asplund C et al: A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 2005, 4(12):1920-1932.
41. Seppala M: Advances in uterine protein research: reproduction and cancer. International Journal of Gynecology & Obstetrics 2004, 85(2):105-118.
42. Lee CL, Pang PC, Yeung WSB, Tissot B, Panico M, Lao TTH, Chu IK, Lee KF, Chung MK, Lam KKW et al: Effects of Differential Glycosylation of Glycodelins on Lymphocyte Survival. Journal of Biological Chemistry 2009, 284(22):15084-15096.
43. Koistinen H, Easton RL, Chiu PC, Chalabi S, Halttunen M, Dell A, Morris HR, Yeung WS, Seppala M, Koistinen R: Differences in glycosylation and sperm-egg binding inhibition of pregnancy-related glycodelin. Biol Reprod 2003, 69(5):1545-1551.
44. Lee CL, Chiu PC, Pang PC, Chu IK, Lee KF, Koistinen R, Koistinen H, Seppala M, Morris HR, Tissot B et al: Glycosylation failure extends to glycoproteins in gestational diabetes mellitus: evidence from reduced alpha2-6 sialylation and impaired immunomodulatory activities of pregnancy-related glycodelin-A. Diabetes 2011, 60(3):909-917.
45. Dey SK, Johnson DC: Embryonic signals in pregnancy. Ann N Y Acad Sci 1986, 476:49-62.
46. Bartol FF, Roberts RM, Bazer FW, Thatcher WW: Characterization of proteins produced in vitro by bovine endometrial explants. Biol Reprod 1985, 33(3):745-759.
47. Geisert RD, Fox TC, Morgan GL, Wells ME, Wettemann RP, Zavy MT: Survival of bovine embryos transferred to progesterone-treated asynchronous recipients. J Reprod Fertil 1991, 92(2):475-482.
48. Dai B, Cao Y, Liu W, Li S, Yang Y, Chen D, Duan E: Dual roles of progesterone in embryo implantation in mouse. Endocrine 2003, 21(2):123-132.
49. Aplin JD, Kimber SJ: Trophoblast-uterine interactions at implantation. Reprod Biol Endocrinol 2004, 2:48.
50. Aplin JD: Embryo implantation: the molecular mechanism remains elusive. Reprod Biomed Online 2006, 13(6):833-839.
51. Aplin JD: The cell biological basis of human implantation. Baillieres Best Pract Res Clin Obstet Gynaecol 2000, 14(5):757-764.
52. Bowen JA, Burghardt RC: Cellular mechanisms of implantation in domestic farm animals. Semin Cell Dev Biol 2000, 11(2):93-104.
53. Kimber SJ, Spanswick C: Blastocyst implantation: the adhesion cascade. Semin Cell Dev Biol 2000, 11(2):77-92.
54. Shiotani M, Noda Y, Mori T: Embryo-dependent induction of uterine receptivity assessed by an in vitro model of implantation in mice. Biol Reprod 1993, 49(4):794-801.
55. Lai TH, Shih Ie M, Vlahos N, Ho CL, Wallach E, Zhao Y: Differential expression of L-selectin ligand in the endometrium during the menstrual cycle. Fertil Steril 2005, 83 Suppl 1:1297-1302.
56. Wang B, Sheng JZ, He RH, Qian YL, Jin F, Huang HF: High expression of L-selectin ligand in secretory endometrium is associated with better endometrial receptivity and facilitates embryo implantation in human being. Am J Reprod Immunol 2008, 60(2):127-134.
57. Genbacev OD, Prakobphol A, Foulk RA, Krtolica AR, Ilic D, Singer MS, Yang ZQ, Kiessling LL, Rosen SD, Fisher SJ: Trophoblast L-selectin-mediated adhesion at the maternal-fetal interface. Science 2003, 299(5605):405-408.
58. Singh H, Aplin JD: Adhesion molecules in endometrial epithelium: tissue integrity and embryo implantation. J Anat 2009, 215(1):3-13.
59. Liu S, Yang X, Liu Y, Wang X, Yan Q: sLeX/L-selectin mediates adhesion in vitro implantation model. Mol Cell Biochem 2011, 350(1-2):185-192.
60. Liu S, Zhang Y, Liu Y, Qin H, Wang X, Yan Q: FUT7 antisense sequence inhibits the expression of FUT7/sLeX and adhesion between embryonic and uterine cells. IUBMB Life 2008, 60(7):461-466.
61. Zhang Y, Liu S, Liu Y, Wang Z, Wang X, Yan Q: Overexpression of fucosyltransferase VII (FUT7) promotes embryo adhesion and implantation. Fertil Steril 2009, 91(3):908-914.
62. Huang HL, Chu ST, Chen YH: Ovarian steroids regulate 24p3 expression in mouse uterus during the natural estrous cycle and the preimplantation period. J Endocrinol 1999, 162(1):11-19.
63. Chan HC, Liu CQ, Fong SK, Law SH, Leung PS, Leung PY, Fu WO, Cheng Chew SB, Wong PY: Electrogenic ion transport in the mouse endometrium: functional aspects of the cultured epithelium. Biochim Biophys Acta 1997, 1356(2):140-148.
64. Singh H, Nardo L, Kimber SJ, Aplin JD: Early stages of implantation as revealed by an in vitro model. Reproduction 2010, 139(5):905-914.
65. G D: Human blood groups.; 2002.
66. Morton JA, Pickles MM, Terry AM: The Sda blood group antigen in tissues and body fluids. Vox Sang 1970, 19(5):472-482.
67. Gardiner-Garden M, Frommer M: CpG islands in vertebrate genomes. J Mol Biol 1987, 196(2):261-282.
68. Prestridge DS: SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements. Comput Appl Biosci 1991, 7(2):203-206.
69. Hubler TR, Scammell JG: Intronic hormone response elements mediate regulation of FKBP5 by progestins and glucocorticoids. Cell Stress Chaperones 2004, 9(3):243-252.
70. Mather JP: Establishment and characterization of two distinct mouse testicular epithelial cell lines. Biol Reprod 1980, 23(1):243-252.
71. Andras Nagy MG, Kristina Vintersten, Richard Behringer: Manipulating the Mouse Embryo. cold spring harbor laboratory press 2003:55.
72. Sonnhammer EL, von Heijne G, Krogh A: A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 1998, 6:175-182.
73. Kyte J, Doolittle RF: A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982, 157(1):105-132.
74. Wassler MJ, Shur BD: Clustering of cell surface (beta)1,4-galactosyltransferase I induces transient tyrosine phosphorylation of focal adhesion kinase and loss of stress fibers. J Cell Sci 2000, 113 Pt 2:237-245.
75. Sophianopoulos AJ, Sophianopoulos JA: Preparation of homogeneous concanavalin A. Prep Biochem 1981, 11(4):413-435.
76. Pereira ME, Kisailus EC, Gruezo F, Kabat EA: Immunochemical studies on the combining site of the blood group H-specific lectin 1 from Ulex europeus seeds. Arch Biochem Biophys 1978, 185(1):108-115.
77. Conte R, Serafini-Cessi F: Comparison between the erythrocyte and urinary Sda antigen distribution in a large number of individuals from Emilia-Romagna, a region of northern Italy. Transfus Med 1991, 1(1):47-49.
78. Staubach F, Kunzel S, Baines AC, Yee A, McGee BM, Backhed F, Baines JF, Johnsen JM: Expression of the blood-group-related glycosyltransferase B4galnt2 influences the intestinal microbiota in mice. ISME J 2012:[Epub ahead of print.].
79. Aplin JD, Jones CJ, McGinlay PB, Croxatto HB, Fazleabas AT: Progesterone regulates glycosylation in endometrium. Biochem Soc Trans 1997, 25(4):1184-1187.
80. Parczyk K, Madjno R, Michna H, Nishino Y, Schneider MR: Progesterone receptor repression by estrogens in rat uterine epithelial cells. J Steroid Biochem Mol Biol 1997, 63(4-6):309-316.
81. Osteen KG, Bruner-Tran KL, Keller NR, Eisenberg E: Progesterone-mediated endometrial maturation limits matrix metalloproteinase (MMP) expression in an inflammatory-like environment: a regulatory system altered in endometriosis. Ann N Y Acad Sci 2002, 955:37-47; discussion 86-38, 396-406.
82. Stites DP, Siiteri PK: Steroids as immunosuppressants in pregnancy. Immunol Rev 1983, 75:117-138.
83. Szekeres-Bartho J, Faust Z, Varga P: The expression of a progesterone-induced immunomodulatory protein in pregnancy lymphocytes. Am J Reprod Immunol 1995, 34(6):342-348.
84. Tan J, Paria BC, Dey SK, Das SK: Differential uterine expression of estrogen and progesterone receptors correlates with uterine preparation for implantation and decidualization in the mouse. Endocrinology 1999, 140(11):5310-5321.
85. Carson DD: The glycobiology of implantation. Front Biosci 2002, 7:d1535-1544.
86. Ben-Zimra M, Koler M, Melamed-Book N, Arensburg J, Payne AH, Orly J: Uterine and placental expression of steroidogenic genes during rodent pregnancy. Mol Cell Endocrinol 2002, 187(1-2):223-231.
87. Peng L, Arensburg J, Orly J, Payne AH: The murine 3beta-hydroxysteroid dehydrogenase (3beta-HSD) gene family: a postulated role for 3beta-HSD VI during early pregnancy. Mol Cell Endocrinol 2002, 187(1-2):213-221.
88. Bilinski MJ, Thorne JG, Oh MJ, Leonard S, Murrant C, Tayade C, Croy BA: Uterine NK cells in murine pregnancy. Reprod Biomed Online 2008, 16(2):218-226.
89. Kuang H, Peng H, Xu H, Zhang B, Peng J, Tan Y: Hormonal regulation of uterine natural killer cells in mouse preimplantation uterus. J Mol Histol 2010, 41(1):1-7.
90. Delgado SR, McBey BA, Yamashiro S, Fujita J, Kiso Y, Croy BA: Accounting for the peripartum loss of granulated metrial gland cells, a natural killer cell population, from the pregnant mouse uterus. J Leukoc Biol 1996, 59(2):262-269.
91. Herington JL, Bany BM: Effect of the conceptus on uterine natural killer cell numbers and function in the mouse uterus during decidualization. Biol Reprod 2007, 76(4):579-588.
92. Stewart IJ, Webster AJ: Lectin histochemical studies of mouse granulated metrial gland cells. Histochem J 1997, 29(11-12):885-892.
93. Carlino C, Stabile H, Morrone S, Bulla R, Soriani A, Agostinis C, Bossi F, Mocci C, Sarazani F, Tedesco F et al: Recruitment of circulating NK cells through decidual tissues: a possible mechanism controlling NK cell accumulation in the uterus during early pregnancy. Blood 2008, 111(6):3108-3115.
94. Bianco J, Stephenson K, Yamada AT, Croy BA: Time-course analyses addressing the acquisition of DBA lectin reactivity in mouse lymphoid organs and uterus during the first week of pregnancy. Placenta 2008, 29(12):1009-1015.
95. Paulson JC, Colley KJ: Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation. J Biol Chem 1989, 264(30):17615-17618.
96. Berger EG: Ectopic localizations of Golgi glycosyltransferases. Glycobiology 2002, 12(2):29R-36R.
97. Hathaway HJ: Cell surface beta1,4-galactosyltransferase function in mammary gland morphogenesis: insights from transgenic and knockout mouse models. J Mammary Gland Biol Neoplasia 2003, 8(4):421-433.
98. Youakim A, Hathaway HJ, Miller DJ, Gong X, Shur BD: Overexpressing sperm surface beta 1,4-galactosyltransferase in transgenic mice affects multiple aspects of sperm-egg interactions. J Cell Biol 1994, 126(6):1573-1583.
99. Miller DJ, Macek MB, Shur BD: Complementarity between sperm surface beta-1,4-galactosyltransferase and egg-coat ZP3 mediates sperm-egg binding. Nature 1992, 357(6379):589-593.
100. Appeddu PA, Shur BD: Molecular analysis of cell surface beta-1,4-galactosyltransferase function during cell migration. Proc Natl Acad Sci U S A 1994, 91(6):2095-2099.
101. Nguyen TT, Hinton DA, Shur BD: Expressing murine beta 1,4-galactosyltransferase in HeLa cells produces a cell surface galactosyltransferase-dependent phenotype. J Biol Chem 1994, 269(45):28000-28009.
102. Hinton DA, Evans SC, Shur BD: Altering the expression of cell surface beta 1,4-galactosyltransferase modulates cell growth. Exp Cell Res 1995, 219(2):640-649.
103. Maillet CM, Shur BD: Perturbing cell surface beta-(1,4)-galactosyltransferase on F9 embryonal carcinoma cells arrests cell growth and induces laminin synthesis. J Cell Sci 1994, 107 ( Pt 6):1713-1724.
104. Duncan JL: Differential effect of Tamm-Horsfall protein on adherence of Escherichia coli to transitional epithelial cells. J Infect Dis 1988, 158(6):1379-1382.
105. Jaakko Parkkinen RV, AND TIMO K. KORHONEN: Identification of Factors in Human Urine That Inhibit the Binding of Escherichia coli Adhesins. Infect Immun 1988, 56(10):8.
106. Karlsson NG, Olson FJ, Jovall PA, Andersch Y, Enerback L, Hansson GC: Identification of transient glycosylation alterations of sialylated mucin oligosaccharides during infection by the rat intestinal parasite Nippostrongylus brasiliensis. Biochem J 2000, 350 Pt 3:805-814.
107. Wang HR, Hsieh CY, Twu YC, Yu LC: Expression of the human Sd(a) beta-1,4-N-acetylgalactosaminyltransferase II gene is dependent on the promoter methylation status. Glycobiology 2008, 18(1):104-113.
108. Varki A, Angata T: Siglecs--the major subfamily of I-type lectins. Glycobiology 2006, 16(1):1R-27R.
109. Miyazaki K, Ohmori K, Izawa M, Koike T, Kumamoto K, Furukawa K, Ando T, Kiso M, Yamaji T, Hashimoto Y et al: Loss of disialyl Lewis(a), the ligand for lymphocyte inhibitory receptor sialic acid-binding immunoglobulin-like lectin-7 (Siglec-7) associated with increased sialyl Lewis(a) expression on human colon cancers. Cancer Res 2004, 64(13):4498-4505.
110. Hung C-J: Characterization of the relationship between mouse uterine 24p3 protein and cytokines. Graduate Institute of Biochemical Sciences College of Life Science National Taiwan University Master Thesis 2008:57.
111. Li PT, Liao CJ, Wu WG, Yu LC, Chu ST: Progesterone-regulated B4galnt2 expression is a requirement for embryo implantation in mice. Fertil Steril 2011, 95(7):2404-2409, 2409 e2401-2403.
112. Rugh R: The Mouse: Its Reproduction and Development Oxford University Press 1990.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top