跳到主要內容

臺灣博碩士論文加值系統

(44.211.84.185) 您好!臺灣時間:2023/05/30 07:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林志遠
研究生(外文):Lin, Chih-Yuan
論文名稱:高工作電壓LiNi0.5Mn1.5O4正極材料與高安全性Li4Ti5O12負極材料之合成及其電化學性質之改善
論文名稱(外文):Synthesis and Improvement of Electrochemical Characteristics in High Voltage Cathode Material LiNi0.5Mn1.5O4 and High Safety Anode Material Li4Ti5O12
指導教授:杜正恭杜正恭引用關係
指導教授(外文):Duh, Jenq-Gong
口試委員:楊模樺陳金銘許家豪陳柏宇
口試日期:2011-9-13
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:英文
論文頁數:148
中文關鍵詞:正極材料LiNi0.5Mn1.5O4負極材料Li4Ti5O12鋰離子二次電池
相關次數:
  • 被引用被引用:0
  • 點閱點閱:340
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:2
近年來,由於電動車市場的崛起,鋰電池的需求已由原先高能量密度轉變為高功率密度和長循環壽命。因此,本研究擬定針對高功率密度與長循環壽命之LiNi0.5Mn1.5O4正極材料及Li4Ti5O12負極材料進行研究。
藉由改良式固態法可有效合成多孔性無雜相之LiNi0.5Mn1.5O4正極材料。隨著多孔性結構形成,電容量由原先的105增加至120 mA/g而且循環壽命也從65 % (充放電500圈)提昇至80 % (充放電1000圈)。
調整煆燒溫度(700~800 0C)製備出LiNi0.5Mn1.5O4擁有Fd3m與(Fd3m+P4332)混合之space group。在55 0C,Fd3m與混合相(Fd3m+P4332)結構之LiNi0.5Mn1.5O4在150圈充放電後,電容量仍有77 與83 %。擁有Fd3m 結構 之LiNi0.5Mn1.5O4電容量衰退可歸咎於Mn3+的分解((Mn3+→Mn2+ + Mn4+)。
經由混合LiCl、TiCl4與草酸經過兩階段燒結過程製備出多孔性負極材料Li4Ti5O12。此多孔性Li4Ti5O12負極材料在0.5、1、5、10 C的充放電速率下,分別出現167、133、100、70 mAh/g且在充放電200圈後,電容量仍然維持超過98 %。
經由調整第一階段燒結溫度的調整能有效使Li2TiO3產生,此化合物能進一步與rutile TiO2反應成純相Li4Ti5O12。純相Li4Ti5O12在0.5與1 C的充放電速率下,能呈現出169與150 mAh/g的電容量且在150圈充放電後,電容量仍然維持超過98 %,然而,有TiO2雜相出現時,在相同的充放電速率下,只有148與125 mAh/g。
為了全面性改善Li4Ti5O12導電性差之缺點,結合Ru doping 與carbon coating的技術來改善Li4Ti5O12粉體內部導電度和降低外部Li4Ti5O12粉體間的傳輸阻抗。在5與10 C的充放電速率且充放電100圈後, Li4Ru0.01Ti4.99O12/C 仍出現120與110 mAh/g。由改質結果可知,Li4Ru0.01Ti4.99O12/C擁有最好的充放電能力與最佳的電容量。

List of Tables III
Figure Captions IV
Abstract X
Chapter 1 Introduction 1
1.1 Lithium ion battery 1
1.2 Motivations 2
1.2.1 Cathode material LiNi0.5Mn1.5O4 2
1.2.2 Anode material Li4Ti5O12 4
Chapter 2 Literature Review 6
2.1 History of Lithium Ion Battery 6
2.2 Cathode material in lithium ion battery 9
2.2.1 The requirement of cathode materials 9
2.2.2 Layer-Structured LiCoO2 and LiNiO2 10
2.2.3 Olivine LiFePO4 14
2.2.4 Spinel LiMn2O4 16
2.2.5 Evolution of 5V cathode materials LiNi0.5Mn1.5O4 19
2.2.6 The electrochemical performance of spinel LiNi0.5Mn1.5O4 with different space group (Fd3m and P4332) 28
2.3 Anode material in lithium ion battery 32
2.3.1 Carbon 32
2.3.2 Stannum (Sn) 35
2.3.3 Lithium titanate (Li4Ti5O12) 37
Chapter 3 Experimental Procedure 53
3.1 A modified solid state method 53
3.1.1 Cathode material LiNi0.5Mn1.5O4 53
3.1.2 Anode material Li4Ti5O12 53
3.2 Characterization and analysis 54
3.2.1 Composition evaluation 54
3.2.2 TGA analysis 54
3.2.3 Phase identification 55
3.2.4 Morphological observation and specific surface area 55
3.2.5 Electrochemical impedance spectroscopy (EIS) 56
3.2.6 Fourier transform infrared spectrophotometer (FTIR) 56
3.2.7 Electrochemical measurement 56
Chapter 4 Results and Discussion 61
4.1 Synthesis of porous and impurity-free LiNi0.5Mn1.5O4 cathode material to improve extended cycling life and rate capability 61
4.1.1 A modified solid state method 61
4.1.2. Compositional Evaluation 65
4.1.3. Phase identification and morphology observation 67
4.1.4. Electrochemical performance 75
4.2. Comparison of electrochemical properties of LiNi0.5Mn1.5O4 with Fd3m space group and with mixed Fd3m and P4332 space groups 82
4.2.1 FTIR analysis for LiNi0.5Mn1.5O4 with different space group 82
4.2.2 Electrochemical performance and ICP analysis 85
4.3 Porous Li4Ti5O12 anode material synthesized by a modified solid state method for electrochemical properties enhancement 91
4.3.1 Phase identification and morphology observation for porous Li4Ti5O12 91
4.3.2 Electrochemical performance and impedance measurement 94
4.4 Fabrication of pure and highly crystalline spinel Li4Ti5O12 anode material by two-step heat treatment method 104
4.4.1 XRD analysis of different preheating temperature 104
4.4.2 Morphology of Li4Ti5O12 fabricated by two-step heat treatment 110
4.4.3. Electrochemical performance of Li4Ti5O12 with and without impurity TiO2 112
4.5 Improved capacity and rate capability of Ru-doped and carbon-coated Li4Ti5O12 anode material 119
4.5.1 The reason for choosing the Ru element 120
4.5.2 The XRD and morphology of Li4Ti5O12, Li4Ti5O12/C, Li4Ru0.01Ti4.99O12 and Li4Ru0.01Ti4.99O12/C 121
4.5.3 Electrochemical performance and impedance analysis results of Li4Ti5O12, Li4Ti5O12/C, Li4Ru0.01Ti4.99O12 and Li4Ru0.01Ti4.99O12/C 126
Chapter 5 Conclusions 134
References 138

[1] Lithium Ion Rechargeable Batteries, Kazunori Ozawa, Willey-Vch, 2009, p.11
[2] H. S. Fang, Z. X. Wang, X. H. Li, H. J. Guo and W. J. Peng, J. Power Sources 153 (2006) 174
[3] X. Wu and S. B. Kim, J. Power Sources 53 (2002) 53
[4] S. T. Myung, S. Komaba, N. Kumagai, H. Yashiro, H. T. Chung and T. H. Cho, Electrochim. Acta 47 (2002) 2543
[5] R. Santhanam and B. Rambabu, J. Power Sources 195 (2010) 5442
[6] Q. Zhang, A. Bonakdarpour, M. Zhang, Y. Gao and J. R. Dahn, J. Electrochem. Soc. 144 (1997) 205
[7] M. Venkateswarlu, C. H. Chen, J. S. Do, C. W. Lin, T. C. Chou and B. Hwang, J. Power Sources 146 (2005) 204
[8] J. L. Allen, T. R. Jow and J. Wolfenstine, J. Power Sources 159 (2006) 1340
[9] J. J. Huang and Z. Y. Jiang, Electrochim. Acta 53 (2008) 7756
[10] Z. Lin, X. Hu, Y. Huai, L. Liu, Z. Deng and J. Suo, Solid State Ionics 181 (2010) 412
[11] P. P. Prosini, R. Mancini, L. Petrucci, V. Contini and P. Villano, Solid State Ionics 144 (2001) 185
[12] J. Hajek, French Patent, 8 (1949) 10
[13] K. A. Klinedinst, U. S. Patent NO. 4, 176, 214 (1979)
[14] A. A. Schneider, U. S. Patent NO. 4, 010, 043 (1972)
[15] M. S. Whittinggham, Science, 192 (1976) 1126
[16] J. M. Amarilla, J. L. M. de Vidales and R. M. Rojas, Solid State Ionics 127 (2000) 73
[17] T. Nagaura, Prog. Batteries Solar Cells 10 (1991) 209
[18] K. Ozaea, Solid State Ionics 69 (1994) 212
[19] Lithium Batteries-Science and Technology, G. A. Nazri and G. Pistoia, Springer, 2009, p.9
[20] Lithium Batteries-Science and Technology, G. A. Nazri and G. Pistoia, Springer, 2009, p.5-8
[21] J. B. Goodenough and Y. Kim, Chem. Mater., 22 (2010) 587
[22] K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough, Mater. Res. Bull. 15 (1980) 783
[23] H. Yoshizawa and T. Ohzuku, Abstract #467 IMLB2006, Biarritz, France, June, 2006
[24] A. Van der Ven, M. K. Aydinol and G. Ceder, Phys. Rev. B, 58 (1998) 2975
[25] S. Venkatraman, Y. Sfin and A. Manthiram, Electrochem. Solid-State Lett. 6 (2003) A9
[26] G. Dutta, A. Manthiram and J. B. Goodenough, J. Solid State Chem. 96 (1992) 123
[27] A. Hirano, R. Kanno, Y. Kawamoto, Y. Takeda, K. Yamamura, M. Takano, K. Ohyama, M. Ohashi and Y. Yamaguchi, Solid State Ionics 78 (1995) 123
[28] J. R. Dahn, E. W. Fuller, M. Obrovac and U. V. Sacken, Solid State Ionics 69 (1994) 265
[29] C. C. Chang, J. Y. Kim and P. N. Kumta, J. Power Sources 89 (2000) 56
[30] A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, J. Electrochem. Soc. 144 (1997) 4
[31] M. Wakihara, Materials Science and Engineering R33 (2001) 109
[32] N. Ravet, Y. Chouinard, J. F. Magnan, S. Besner, M. Gauthier and M. Armand, J. Power Sources 97-98 (2001) 503
[33] J. K. Kim, G. Cheruvally, J. W. Choi, J. U. Kim, J. H. Ahn, G. B. Cho, K. W. Kim and H. J. Ahn, J. Power Sources 166 (2007) 211
[34] W. Ojczyk, J. Marzec, K. Swierczek, W. Zajac, M. Molenda, R. Dziembaj and J. Molenda, J. Power Sources 173 (2007) 700
[35] S. Y. Chung, J. T. Bloking and Y.M. Chiang, Nature Mater., 1 (2002) 123
[36] J. M. Tarascon and D. Guyomard, Electrochemical Acta 9 (1993) 1221
[37] R. J. Gummow, A. Dekock and M. M. Thackeray, Solid State Ioics 69 (1994) 59
[38] H. Fang, Z. Wang, B. Zhang, X. Li and G. Li, Electrochemistry Communications 9 (2007) 1077
[39] T. Ohzuku, S. Takeda and M. Iwanaga, J. Power Sources 81–82 (1999) 90
[40] J. Shu, T. F. Yi, M. Shui, Y. Wang, R. S. Zhu, X. F. Chu, F. Huang, D. Xu and L. Hou, Computational Materials Science 50 (2010) 776
[41] R. Santhanam and B. Rambabu, J. Power Sources 195 (2010) 5442
[42] H. Y. Xu, S. Xie, N. Ding, B. L. Liu, Y. Shang and C.H. Chen, Electrochim. Acta. 51 (2006) 4352
[43] R. Alcantara, M. Jaraba, P. Lavela and J. L. Tirado, Electrochim. Acta. 47 (2002) 1829
[44] S. W. Oh, S. H. Park, J. H. Kim, Y. C. Bae and Y. K. Sun, J. Power Sources 157 (2006) 464
[45] Z. R. Chang, Z. J. Chen, F. Wu, H. W. Tang, Z. H. Zhu, X. Z. Yuan and H. J. Wang, Electrochim. Acta 53 (2008) 5927
[46] J. H. Kim, S. T. Myung and Y. K. Sun, Electrochim. Acta. 49 (2004) 219
[47] Z. Chang, D. Dai, H. Tang, X. Yu, X. Z. Yuan and H. Wang, Electrochim. Acta. 55 (2010) 5506
[48] J. H. Kim, S. T. Myung and Y. K. Sun, Electrochim. Acta. 49 (2004) 219
[49] X. Zhang, J. Liu, H. Yu, G. Yang, J. Wang, Z. Yu, H. Xie and R. Wang, Electrochim. Acta. 55 (2010) 2414
[51] M. Kunduraci, J. F. Al-Sharab and G. G. Amatucci, Chem. Mater. 18 (2006) 3585
[52] M. Kunduraci and G. G. Amatucci, J. Power Sources 165 (2007) 359
[53] R. santhanam and B. Rambabu, J. Power Sources 195 (2010) 5442
[54] X.Y. Feng, C. Shen, X. Fang, C.H. Chen, Journal of Alloys and Compounds 509 (2011) 3623
[55] Y. Idemoto, H. Narai and N. Koura, J. Power Sources 119 (2003) 125
[56] K. M. Shaju and P. G. Bruce, Dalton Trans. 37 (2008) 5471
[57] T. F. Yi and Y. R. Zhu, Electrochim. Acta. 53 (2008) 3120
[58] X. Wu and S. B. Kim, J. Power Sources 109 (2002) 53
[59] M. I. Zaki, M. A. Hasan, L. Pasupulety and K. Kumari, Thermochim. Acta 2 (1997) 171
[60] X. Fang, N. Ding, X.Y. Feng, Y. Lu and C.H. Chen, Electrochim. Acta. 54 (2009) 7471
[61] J. H. Kim, S. T. Myung, C. S. Yoon, S. G. Kang and Y. K. Sun, Chem. Mater. 16 (2004) 906
[62] M. Kunduraci and G. G. Amatucci, J. Electrochem. Soc. 153 (2006) A1345
[63] Lithium Ion Batteries Fundamentals and Performance, M. Wakihara and O. Yamamoto, 1998, p184~187
[64] Lithium Ion Batteries Fundamentals and Performance, M. Wakihara and O. Yamamoto, 1998, p190
[66] Y. R. Jhan, J. G. Duh and S. Y. Tsai, Diamond and Related Materials, 20 (2011) 413
[67] E. Ferg, R. J. Gummov, A. de Kock and M. M. Thackray, J. Electrochem. Soc. 141 (1994) L147
[68] T. Ohzuku, A. Ueda and N. Yamamoto, J. Electrochem. Soc. 142 (1995) 1431
[69] S. Scharner, W. Weppner and P. B. Schmid, J. Electrochem. Soc. 146 (1999) 857
[70] V. R. Albertini, P. Perfetti, F. Ronci, P. Reale and B. Scrosati, Appl. Phys. Lett. 79 (2001) 27
[71] F. Ronci, P. Reale, B. Scrosati, S. Panero, V. R. Albertini, P. Perfetti, M. Michiel and J. M. Merino, J. Phys. Chem. B 106 (2002) 3082
[72] K. Ariyoshi, R. Yamato and T. Ohzuku, Electrochim. Acta. 51 (2005) 1125
[73] Y. Tang, L. Yang, S. Fang and Z. Qiu, Electrochim. Acta. 54 (2009) 6244
[74] L. Shen, C. Yuan, H. Luo, X. Zhang, K. Xu and F. Zhang, J. Mater. Chem. 21 (2011) 761
[75] S. Ji, J. Zhang, W. Wang, Y. Huang, Z. Feng, Z. Zhang and Z. Tang, Materials Chemistry and Physics 123 (2010) 510
[76] H. Shiiba, M. Nakayama and M. Nogami, Solid State Ionics 181 (2010) 994
[77] B. Tian, H. Xiang, L. Zhang, Z. Li and H. Wang, Electrochim. Acta. 55 (2010) 5453
[78] S. Huang, Z. Wen, X. Zhu and Z. Lin, J. Power Sources 165 (2007) 408
[79] T. F. Yi, L. J. Jiang, J. Shu, C. B. Yue, R. S. Zhu and H. B. Qiao, Journal of Physics and Chemistry of Solids 71 (2010) 1236
[80] S. Huang, Z. Wen, X. Zhu and Z. Gu, Electrochem. Commun. 6 (2004) 1093
[81] L. Cheng, J. Yan, G. N. Zhu, J. Y. Luo, C. X. Wang and Y. Y. Xia, J. Mater. Chem. 20 (2010) 595
[82] U. Lafont, C. Locati and E.M. Kelder, Solid State Ionics 177 (2006) 3023
[83] X. Fang, Y. Lu, N. Ding, X.Y. Feng, C. Liu and C.H. Chen, Electrochim. Acta. 55 (2010) 832
[84] X. R. Ye, D. Z. Jia, J. Q. Yu, X. Q. Xin and Z. Xue, Adv. Mater. 11 (1999) 941
[85] A. J. Patil, M. H. Shinde and H. S. Potdar, Mater. Chem. Phys. 68 (2001) 7
[86] S. Bach, J. P. Pereira-Ramos and N. Baffier, J. Power Sources 81-82 (1999) 273
[87] S. Batch, J. P. Pereira-Ramos and N. Baffier, J. Mater. Chem. 8 (1998) 251
[88] M. Venkateswarlu, C. H. Chen, J. S. Do, C.W. Lin, T. C. Chou and B. J. Hwang, J. Power Sources 146 (2005) 204
[89] Lithium Ion Batteries Fundamentals and Performance, M. Wakihara and O. Yamamoto, 1998, p.5
[90] K. Ariyoshi, R. Yamato, Y. Makimura, T. Amazutsumi, Y. Maeda and T. Ohzuku, Electrochemistry 76 (2008) 46
[91] J. H. Kim, S. T. Myung and Y. K. Sun, Electrochim. Acta. 49 (2004) 219
[92] R. Alcantara, M. Jaraba, P. Lavela, J. L. Trado, E. Zhecheva and R. Stoyanova, Chem. Mater. 16 (2004) 1573
[93] Y. Idemoto, H. Narai and N. Koura, J. Power Sources, 119 (2003) 125
[94] M. Kunduraci and G. G. Amatucci, Electrochim. Acta. 53 (2008) 4193
[95] X. Li, M. Qu and Z. Yu, J. Alloys and Compounds 487 (2009) L12
[96] Y. Hao, Q. Lai, Z. Xu, X. Liu and X. Ji, Solid State Ionics 176 (2005) 1201
[97] R. B. Khomane, A. S. Prakash, K. Ramesha and M. Sathiya, Materials Research Bulletin 46 (2011) 1139
[98] G. Wang, J. Xu, M. Wen, R. Cai, R. Ran and Z. Shao, Solid State Ionics 179 (2008) 946
[99] K. C. Hsiao, S. C. Liao and J. M. Chen, Electrochim. Acta. 53 (2008) 7242
[100] C. H. Jiang, Y. Zhou, I. Honma, T. Kudo and H. S. Zhou, Electrochim. Acta. 166 (2007) 514
[101] X. Li, M. Qu and Z. Yu, Solid State Ionics 181 (2010) 635
[102] T. Yuan, R. Cai, K. Wang, R. Ran, S. Liu and Z. Shao, Ceramics International 35 (2009) 1757
[103] Y. J. Hao, Q. Y. Lai, J. Z. Lu, H. L. Wang, Y. D. Chen and X. Y. Ji, J. Power Sources 158 (2006) 1358
[104] Y. J. Hao, Q. Y. Lai, D. Q. Liu, Z. U. Xu and X. Y. Ji, Materials Chemistry and Physics 94 (2005) 382
[105] S. Y. Yin, L. Song, X. Y. Wang, K. L. Zhang and Y. X. Zhang, Electrochim. Acta. 54 (2009) 5629
[106]E. Matsui, Y. Abe and M. Zaghib, J. Am. Cerm. Soc. 91 (2008) 1522
[107] M. R. Mohammadi and D. J. Fray, J. Sol-Gel Technol, 55 (2010) 19
[108]G. Yan, H. Fang, H. Zhao, G. Li, Y. Yang and L. Li, Journal of Alloys and Compounds 470 (2009) 544
[109] H. Kleykamp, Fusion Engineering and Design, 61 (2002) 361
[110] J. Wolfensite and J. L. Allen, J. Power Sources 180 (2008) 582
[110] X. Li, M. Qu and Z. Yu, J. Alloys and Compounds 487 (2009) L12
[111] B. Tian, H. Xiang, L. Zhang and Z. Li, H. Wang, Electrochim. Acta. 55 (2010) 5453
[113] X. Li, M. Qu, Y. Huai and Z. Yu, Electrochim. Acta. 55 (2010) 2978
[114] J. Goodenough and Y. Kim, Chem. Mater. 22 (2010) 587

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 軟磁鐵鈷鉿氧/氧化鋁多層膜與鐵鉿氮薄膜之開發及其磁性質對功率電感特性之影響
2. 經由氣氛控制與碳披覆之鈦酸鋰的電化學特性與其在高功率鋰離子電池的應用
3. 應用於高功率鋰離子電池之LiNi0.5Mn1.5O4正極材料的合成與電化學性質之改良
4. 鋰電池負極材料Li4Ti5O12之合成及其性質
5. 高工作電壓鋰鎳錳氧正極材料之合成與其電化學行為的改善
6. 應用於鋰離子電池之錳系高工作電壓尖晶石正極材料與高電容量富鋰層狀氧化物之合成機制、結構分析與電化學性能探討
7. 以溶膠凝膠法合成鋰電池具陽離子摻雜及碳材包覆之Li4Ti5O12負極材料與其電化學性質檢驗
8. AlxCo1.5CrFeNi1.5Tiy與Al0.3CrFe1.5MnNi0.5高熵合金之微結構與磨耗行為
9. 探討奈米複合晶鉻鉬矽氮薄膜高溫磨耗行為及田口法製程優化提升薄膜強度與抗磨耗性能
10. 藉改變銅/錫銀/鎳微凸塊系統之金屬基材接合順序以調控介金屬化合物的相生成及演變機制
11. 錫銀銅鎳銲料與三維封裝中錫銀微銲點接合新穎銅鋅底層金屬後之微觀結構、晶粒方向性及可靠度測試
12. FePd及FePd/IrMn薄膜晶體結構與磁性質之研究
13. 以表面改質和奈米複合材料提升高功率型鈦酸鋰鋰離子負極材料
14. 鉻鋁矽氮奈米複合晶薄膜高溫抗磨耗特性及藉由低壓電漿滲氮改質基板與鍍膜之附著性
15. 以奈米複合晶技術開發具優異高溫穩定性之多元氮化鉻鋁矽薄膜