跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 12:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳智彥
研究生(外文):Chen, Chih-Yen
論文名稱:奈米結構金、矽化鈦與壓電材料合成結構鑑定與其性能研究
論文名稱(外文):Nanostructured Gold, Titanium Silicides and Piezoelectric Materials: Synthesis, Characterization, and Performance
指導教授:周立人周立人引用關係
指導教授(外文):Chou, Li-Jen
口試委員:王中林陳力俊黃肇瑞綦振瀛蔡定平曾俊元果尚志周立人
口試委員(外文):Zhong Lin Wang
口試日期:2012-05-26
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:134
中文關鍵詞:鎳矽化物鈦矽化物核殼狀奈米線壓電氧化鋅氮化鎵發光二極體
外文關鍵詞:goldNi2SiTiSi2core-shellnanowirepiezopotentialZnOGaNLED
相關次數:
  • 被引用被引用:0
  • 點閱點閱:356
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
本論文的核心研究主題主要是構思暨系統地探索以下先進的奈米材料等性能,其中包括:1.金、2.矽化鎳-矽化鈦核殼奈米線與3.具優秀壓電性之氧化鋅與氮化鎵奈米線等。但就一般材料分類而言,上述材料可簡單分為以下兩種物理特性:金屬性與半導體性。根據不同物理屬性的材料則可適用於各種元件上。其中,在金屬性奈米材料研究上,我們主要合成金奈米線與矽化鎳-矽化鈦核殼奈米線,並針對其材料表徵與元件特性,其中包括其磁性、電性與場發射性能進行一系列研究。在成長方面,我們是利用一個嶄新的固-液-固合成方式成長出這些金屬性的奈米線並針對其成長方式進行詳細地討論。其中對於金奈米線在場發射實驗測試中,其表現出相當優異的性能,元件最低的開啟電壓為3 V /μm而最大電流密度則為1.5 mA/cm2。另一方面,矽化鎳-矽化鈦核殼奈米線亦有許多優秀有趣的物性像擁有絕佳的熱穩定性、磁性和極低的電阻。
此外,本論文亦嘗試合成具壓電性之纖鋅礦結構的氧化鋅與氮化鎵奈米線。一般壓電特性起因於材料中電荷載體的傳輸行為,但對於氧化鋅與氮化鎵材料而言,則為具有多重的物理意義指標:皆具有壓電特性且為可發光半導體。因此,我們也深入探討此二奈米線在能源研究上的各種應用,包括不需外接電池則可自體供電的發光二極體元件、混合式可撓曲壓電材料奈米發電機,最後並探討利用人類日常活動而進行壓電發電機的研究。結果皆顯示,具有壓電半導體性的氧化鋅與氮化鎵奈米奈擁有很大的未來研究潛力。本研究成果也成功了解這些壓電材料的基礎科學,並且推測其未來工程上的潛力與應用。
本論文已呈現上述幾項優異的研究成果,並針對不同材料進而探索了多種可能性的應用以下如1.黃金奈米線已顯露可做為優秀的場發射器的潛力,2.矽化鎳-矽化鈦核殼奈米線核殼可作為元件上互聯橋接器或進而作為磁阻電子元件之候選人,3.有著極佳壓電材料特性的氧化鋅和氮化鎵奈米材料,盼能輔以未來的微奈米電子技術,可將人類或動物在日常活動之動能轉化為電能的壓電發電機中核心材料。

The central theme of this dissertation is mainly design and systematic exploration of advanced material performances including the following: (1) gold nanowire, (2) nickel silicide-titanium silicide (Ni2Si/TiSi2) core-shell nanowire, and (3) piezopotential nanowries. Basically, they possess two different kinds of properties, metallic and semiconducting properties, which can be applied in various applications. For metallic nanomaterials, we mainly focus on synthesis and characterization of the gold nanowires and Ni2Si/TiSi2 core-shell nanowires for applications including magnetic, electronic and field-emission properties. An innovative grow mechanism is discussed in detail based on the S-L-S process for both of metallic nanowires. Our gold nanowires exhibit outstanding properties with the lowest turn-on field of 3 V/μm and the maximum current density of 1.5 mA/cm2. Furthermore, Ni2Si/TiSi2 silicides nanowires have many interesting properties measured as well like high melting temperature, thermal stability and low resistivity.
For piezopotential materials, we try to synthesize some wurtzite structure nanomaterials such as zinc oxide (ZnO) and gallium nitrite (GaN). The effect of piezopotential on the transport behavior of charge carriers is significant due to their multiple functionalities of piezoelectricity, semiconductor and photon excitation. Therefore, we also study for their various applications in energy science including self-powered LED devices, hybrid nanogenerators, and power generation from human daily activity. The results have shown the great potential of these nanomaterials in future applications. Efforts have been carried out to understand the underlying science and to enhance and glorify their possible engineering applications. The above outstanding results warrant several possible applications for (1) gold nanowires as the electron field emitters, (2) Ni2Si/TiSi2 core-shell nanowire as electronic interconnect or magneto-resistance devices, and (3) promising wurtzite structure ZnO and GaN nanowires for the energy harvester which coverts low frequency mechanical movements of human/animal into electricity in future microelectronics.

Contents
Contents I
Acknowledgements IV
List of Acronyms and Abbreviations VI
Abstract VIII
摘 要 X
Chapter 1 Introduction of Nanotechnology 1
1.1 Nanotechology 1
1.1.1 Top-down Approach 3
1.1.2 Bottom-up Approach 3
1.2 Synthesis Process of Nanowires 4
1.2.1 Vapor-liquid-solid (V-L-S) Growth Mechanism 4
1.2.2 Solid-liquid-solid (S-L-S) Growth of Mechanism 7
1.3 Studies of the Thesis (1): Metallic Nanowires 9
1.3.1 Gold (Au) 9
1.3.2 Titanium Silicides (TiSi2) 11
1.4 Studies of the Thesis (2): Piezoelectric Wurtzite Materials 14
1.4.1 Zinc Oxide (ZnO) 16
1.4.2 Gallium Nitride (GaN) 18
1.5 Scope and Aim of the Thesis 20
Chapter 2 Experimental Procedures 21
2.1 Scanning Electron Microscope Analysis 21
2.2 Transmission Electron Microscope Analysis 21
2.2.1 Preparation of Top-view Samples 22
2.2.2 Preparation of Cross-sectional Samples 22
2.2.3 Preparation of Nanowires Samples for Transmission Electron Microscopy Observation 23
2.3 Energy Dispersive Spectrometer Analysis 24
2.4 Sheet Resistance Measurements 24
2.5 SQUID Measurement 25
2.6 Field-Emission Characterization Measurements 25
2.7 Piezogenerators Measurement 26
Chapter 3 Coaxial Metal-Silicide Ni2Si/C54-TiSi2 Nanowires 29
3.1 Motivation 29
3.2 Experimental Methods 30
3.3 Results and Discussion 31
3.4 Conclusions 51
Chapter 4 Excellent Au Nanowire Field Emitters on an Indium Tin Oxide Substrate via Liquid-solid Process 52
4.1 Motivation 52
4.2 Experimental Methods 53
4.3 Results and Discussion 54
4.4 Conclusions 70
Chapter 5 A Hybrid Piezoelectric Structure for Wearable Nanogenerator 71
5.1 Motivation 71
5.2 Experimental Methods 72
5.3 Results and Discussion 74
5.4 Conclusions 88
Chapter 6 Gallium Nitride Nanowires Based Nanogenerators and Light-Emitting Diodes 89
6.1 Motivation 89
6.2 Experimental Methods 90
6.3 Results and Discussion 91
6.4 Conclusions 105
Chapter 7 Summary 106
7.1 Coaxial Metal-Silicide Ni2Si/C54-TiSi2 Nanowires [chapter 3] 106
7.2 Excellent Au Nanowire Field Emitters on an Indium Tin Oxide Substrate via Liquid-solid Process [chapter 4] 106
7.3 A Hybrid Piezoelectric Structure for Wearable Nanogenerator [chapter 5] 107
7.4 Gallium Nitride Nanowires Based Nanogenerators and Light-Emitting Diodes [chapter 6] 107
Chapter 8 Future Prospects 109
8.1 Core-Shell Silicide Nanowires for Light Emitting Performance 109
8.2 Direct Growth of in-situ Doped p-n Homojuction Nanowrie Arrays for Self-powered LED system 109
8.3 Planar Field-emission Display Devices Based on Nanowire Arrays 110
References 112
Chapter 1 112
Chapter 3 117
Chapter 4 121
Chapter 5 125
Chapter 6 127
Publication List 130
Chapter 1
1.1. Alivisatos P., “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science 1996, 271, 933-937
1.2. Murray C. B.; Kagan C. R.; and Bawendi M. G., “Synthesis and Characterization of Monodisperse Nanocrystals and Close-packed Nanocrystal Assemblies,” Annu. Rev. Mater. Sci. 2000, 30, 545-610
1.3. Krans J. M.; van Rutenbeek J.M.; Fisun V. V.; Yanson I. K.; and deJongh L. J., “The Signature of Conductance Quantization in Metallic Point Contacts,” Nature 1995, 375, 767-769
1.4. Chen J.; Reed M. A.; Rawlett A. M.; and Tour J. M., “Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device,” Science 1999, 286, 1550-1552
1.5. Papadopoulos C.; Rakitin A.; Li J; Vedeneev A. S.; and Xu J. M., “Electronic Transport in Y-Junction Carbon Nanotubes,” Phys. Rev. Lett. 2000, 85, 3476-3479
1.6. Kushwaha M. S., “Plasmons and magnetoplasmons in semiconductor heterostructures,” Surf. Sci. Rep. 2001, 41, 1-416
1.7. Meindl J. D.; Chen Q.; and Davis J. A., “Limits on Silicon Nanoelectronics for Terascale Integration,” Science 2001, 293, 2044-2049
1.8. Lieber C. M., “The Incredible Shrinking Circuit,” Sci. Am. 2001, 285, 58-65
1.9. Balzani V.; Credi A.; and Venturi M., “The Bottom-Up Approach to Molecular-Level Devices and Machines,” Chem. Eur. J. 2002, 8, 5524-5532
1.10. Drexler K. E., “Engines of Creation, The Coming Era of Nanotechnology,” Anchor Press, New York 1986.
1.11. Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q., “One-dimensional nanostructures: Synthesis, characterization, and applications,” Adv. Mater. 2003, 15, 353-389.
1.12. Wagner R. S.; Ellis W. C., “Vapor-Solid-Liquid Mechanism of Single
Crystal Growth,” Appl. Phys. Lett. 1964, 4, 89-90
1.13. Okamoto, H.; T. B. Massalski, “Phase diagrams of binary gold alloys,” American Society for Metals International, Ohio, 1987.
1.14. J. D. Holmes, K. P. Johnston, R. C. Doty, B. A. Korgel, “Control of thickness and orientation of solution-grown silicon nanowires,” Science, 2000, 287, 1471-1471
1.15. Corti, C. W.; Holliday R. J.; Thompson D. T., “Developing new industrial applications for gold: Gold nanotechnology,” Gold Bull. 2002, 35, 111-117.
1.16. Chen, J. Y.; Wiley, B. J.; Xia, Y. N., “One-dimensional nanostructures of metals: Large-scale synthesis and some potential applications,” Langmuir 2007, 23, 4120-4129.
1.17. Ohnishi, H.; Kondo, Y.; Takayanagi, K., “Quantized conductance through individual rows of susended gold atoms,” Nature 1998, 395, 780-783.
1.18. Kondo, Y.; Takayanagi, K., “Synthesis and characterization of helical multi-shell gold nanowires,” Science 2000, 289 , 606-608.
1.19. Krenn, J. R.; Lamprecht, B.; Ditlbacher, H.; Schider, G.; Salerno, M.; Leitner A.; Aussenegg, F. R., “Non–diffraction-limited light transport by gold nanowires,” Europhys. Lett. 2002, 60, 663
1.20. Lu, Y.; Yang, M.; Qu, F.; Shen, G.; Yu, R., “Enzyme-functionalized gold nanowires for the fabrication of biosensors,” Bioelectrochemistry 2007, 71, 211-216
1.21. Djalali, R.; Chen, Y.; Matsui, H., “Au nanowire fabrication from sequenced histidine-rich peptide,” J. Am. Chem. Soc. 2002, 124, 13660-13661.
1.22. Swanson, H. E.; Fuyat, R. K.; Ugrinic, G. M., “National Bureau of Standards Circular,” 1954.
1.23. Ma Z.; Allen L. H., “Silicide technology for integrated circuits,” IEEE, London, 2004
1.24. Massalski T. B., “Binary alloy phase diagrams,” ASM, Ohio, 1990.
1.25. Lur W.; Chen L. J., “Growth kinetics of amorphous interlayer formed by interdiffusion of polycrystalline Ti thin-film and single-crystal silicon,” Appl. Phys. Lett. 1989, 54, 1217-1219
1.26. Wang M. H.; Chen L. J., “Phase formation in the interfacial reactions of ultrahigh vacuum deposited titanium thin film on (111) Si,” J. Appl. Phys. 1992, 71, 5918-5925 .
1.27. van Loenen E. J.; Fischer A. E.; van der Veen J. F., “Ti-Si mixing at room temperature: a high resolution ion backscattering study,” Surf. Sci. Rep 1985, 155, 65-78
1.28. Chen L. J., “Solid state amorphization in metal/Si systems,” Mater. Sci. Eng. R 2000, 29, 115-152
1.29. Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M., “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 2007, 449, 885-9.
1.30. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D., “Nanowire dye-sensitized solar cells,” Nature Mater. 2005, 4, 455-459.
1.31. Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W., “Nanostructured materials for advanced energy conversion and storage devices,” Nature Mater. 2005, 4, 366-377.
1.32. Boukai, A. I.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J. K.; Goddard, W. A.; Heath, J. R., “licon nanowires as efficient thermoelectric materials,” Nature 2008, 451, 168-171.
1.33. Wang, Z. L.; Song, J. H., “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays,” Science 2006, 312, 242-246.
1.34. Wang, Z. L., “Progress in Piezotronics and Piezo-Phototronics,” Adv. Mater. 2012, DOI: 10.1002/adma.201104365
1.35. Wang, Z. L., “Self-Powered Nanosensors and Nanosystems,” Adv. Mater. 2012, 24, 280-285
1.36. Ozgur, U.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A. ; Dogan, S.; Avrutin, V.; Cho, S. J.; Morkoc, H., “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 2005, 98, 04301.
1.37. Waltereit, P.; Brandt, O.; Trampert, A.; Grahn, H. T.; Menniger, J.; Ramsteiner, M.; Reiche, M.; Ploog, K. H., “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 2000, 406, 865-868.
1.38. Ambacher, O., “Growth and applications of Group III-nitrides,” J. Phys. D. Appl. Phys. 1998, 31, 2653-2710.
1.39. Huang, C. T.; Song, J. H.; Lee, W. F.; Ding, Y.; Gao, Z. Y.; Hao, Y.; Chen, L. J.; Wang, Z. L., “GaN Nanowire Arrays for High-Output Nanogenerators,” J. Am. Chem. Soc. 2010, 132, 4766-4771.
1.40. Lin, L.; Lai, C. H.; Hu, Y. F.; Zhang, Y.; Wang, X.; Xu, C.; Snyder, R. L.; Chen, L. J.; Wang, Z. L., “High Output Nanogenerator Based on Assembly of GaN Nanowires,” Nanotechnology 2011, 22, 475401.


Chapter 3
3.1. Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J., “Ballistic carbon nanotube field-effect transistors,” Nature 2003, 424, 654-657.
3.2. Gambardella, P.; Dallmeyer, A.; Maiti, K.; Malagoli, M. C.; Eberhardt, W.; Kern, K.; Carbone, C., “Ferromagnetism in one-dimensional monatomic metal chains,” Nature 2002, 416, 301-304.
3.3. Wang, Z. L., “Nanopiezotronics,” Adv. Mater. 2007, 19, (6), 889-892.
3.4. Zheng, G. F.; Lu, W.; Jin, S.; Lieber, C. M., “Synthesis and fabrication of high-performance n-type silicon nanowire transistors,” Adv. Mater. 2004, 16, 1890.
3.5. Huang, Y.; Lieber, C. M., “Integrated nanoscale electronics and optoelectronics: exploring nanoscale science and technology through semiconductor nanowires,” Pure Appl. Chem. 2004, 76, 2051-2068.
3.6. Lin, Y. C.; Lu, K. C.; Wu, W. W.; Bai, J. W.; Chen, L. J.; Tu, K. N.; Huang, Y., “Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices,” Nano Lett. 2008, 8, 913-918.
3.7. Chen, L. J., “Metal Silicides: An Integral Part of Microelectronics,” JOM 2005, 57, 24-30.
3.8. Schmitt, A. L.; Higgins, J. M.; Szczech, J. R.; Jin, S., “Synthesis and applications of metal silicide nanowires,” Journal of Materials Chemistry 2010, 20, 223-235.
3.9. Calandra C.; Bisi O.; and Ottaviani G., “Electronic properties of silicon-transition metal interface compounds,” Surf. Sci. Rep. 1985, 4, 271-364.
3.10. Gambino J.P.; Colgan E.G., “Silicides and ohmic contacts,” Mater. Chem. Phys., 1998, 52, 99-146
3.11. Huang, J. S.; Liou, H. K.; Tu, K. N., “Polarity effect of electromigration in Ni2Si contacts on Si,” Phys. Rev. Lett. 1996, 76, 2346-2349.
3.12. Song, Y. P.; Schmitt, A. L.; Jin, S., “Ultralong single-crystal metallic Ni2Si nanowires with low resistivity,” Nano Lett. 2007, 7, 965-969.
3.13. Chang, C. M.; Chang, Y. C.; Chung, Y. A.; Lee, C. Y.; Chen, L. J., “Synthesis and Properties of the Low Resistivity TiSi2 Nanowires Grown with TiF4 Precursor,” J. Phys. Chem. C 2009, 113, 17720-17723.
3.14. Kittl, J. A.; Lauwers, A.; Pawlak, M. A.; van Dal, M. J. H.; Veloso, A.; Anil, K. G.; Pourtois, G.; Demeurisse, C.; Schram, T.; Brijs, B.; de Potter, M.; Vrancken, C.; Maex, K., “Ni fully silicided gates for 45nm CMOS applications,” Microelectron. Eng. 2005, 82, 441-448.
3.15. Alberti, A.; Bongiorno, C.; Alippi, P.; La Magna, A.; Spinella, C.; Rimini, E., “Structural characterization of Ni2Si pseudoepitaxial transrotational structures on [001] Si,” Acta Crystallogr., Sect. B 2006, 62, 729-736.
3.16. Zhang, K.; Lieb, K. P.; Bibic, N.; Pilet, N.; Ashworth, T. V.; Marioni, M. A.; Hug, H. J., “Microstructural and magnetic properties of thermally mixed Ni/Si bilayers,” J. Phys. D: Appl. Phys. 2008, 41.
3.17. Ramaswamy, S.; Gopalakrishnan, C.; Kumar, N. S.; Littleflower, A.; Ponnavaikko, M., “Fabrication of Ni nanodots templated by nanoporous polysulfone membrane: structural and magnetic properties,” Appl. Phys. A 2010, 98, 481-485.
3.18. Chen, X. A.; Zhao, A. G.; Shao, Z. F.; Li, C. A.; Williams, C. T.; Liang, C. H., “Synthesis and Catalytic Properties for Phenylacetylene Hydrogenation of Silicide Modified Nickel Catalysts,” J. Phys. Chem. C 2010, 114, 16525-16533.
3.19. Colinet, C.; Wolf, W.; Podloucky, R.; Pasturel, A., “Ab initio study of the structural stability of TiSi2 compounds,” Appl. Phys. Lett. 2005, 87.
3.20. Wang, T.; Oh, S. Y.; Lee, W. J.; Kim, Y. J.; Lee, H. D., “Ab initio comparative study of C54 and C49 TiSi2 surfaces,” Appl. Surf. Sci. 2006, 252, 4943-4950.
3.21. Lauhon, L. J.; Gudiksen, M. S.; Lieber, C. M., “Semiconductor nanowire heterostructures,” Philos. Trans. R. Soc. London Ser. A 2004, 362, 1247-1260.
3.22. Wu, Y.; Xiang, J.; Yang, C.; Lu, W.; Lieber, C. M., “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 2004, 430, 61-65.
3.23. Weber, W. M.; Geelhaar, L.; Unger, E.; Cheze, C.; Kreupl, F.; Riechert, H.; Lugli, P., “Silicon to nickel-silicide axial nanowire heterostructures for high performance electronics,” Phys. Status Solidi B 2007, 244, 4170-4175.
3.24. Lin, Y. C.; Chen, Y.; Shaios, A.; Huang, Y., “Detection of spin polarized carrier in silicon nanowire with single crystal MnSi as magnetic contacts,” Nano Lett. 2010, 10, 2281-2287.
3.25. Barton, P. T.; Lauhon, L. J.; Zhang, S., “Formation of Metal-Semiconductor Axial Nanowire Heterostructures through Controlled Silicidation,” Nanoscape 2009, 6, 58-62.
3.26. Lauhon, L. J.; Gudiksen, M. S.; Wang, C. L.; Lieber, C. M., “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature 2002, 420, 57-61.
3.27. Savage, J. E.; Rachlin, E.; Dehon, A.; Lieber, C. M.; Wu, Y., “Radial addressing of nanowires,” ACM J. Emerging Technol. Comput. Syst. 2006, 2, 129-154.
3.28. Chang, M. T.; Chen, C. Y.; Chou, L. J.; Chen, L. J., “Core-Shell Chromium Silicide-Silicon Nanopillars: A Contact Material for Future Nanosystems,” Acs Nano 2009, 3, 3776-3780.
3.29. Chueh, Y. L.; Chou, L. J.; Cheng, S. L.; Chen, L. J.; Tsai C. J.; Hsu C. M.; Kung, S. C. “Synthesis and characterization of metallic TaSi2 nanowires” Appl. Phys. Lett. 2005, 87, 223113
3.30. Chueh, Y. L.; Ko, M. T.; Chou, L. J.; Chen, L. J.; Wu, C. S.; Chen, C. D., “TaSi2 Nanowires: A Potential Field Emitter and Interconnect,” Nano Lett. 2006, 6, 1637-1644.
3.31. Guliants, E. A.; Anderson, W. A., “Study of dynamics and mechanism of metal-induced silicon growth,” J. Appl. Phys. 2001, 89, 4648-4656.
3.32. Tu, K. N.; Ottaviani, G.; Gosele, U.; Foll, H., “Intermetallic compound formation in thin-film and in bulk samples of the nickel-silicon binary system,” J. Appl. Phys. 1983, 54, 758-763.
3.33. Liu, F., “Self-Assembly of Three-Dimensional Metal Islands: Nonstrained versus Strained Islands,” Phys. Rev. Lett. 2002, 89, 246105.
3.34. Robles R. and Khanna S. N., “Stable T2Sin(T = Fe,Co,Ni,1 £ n £ 8) cluster motifs,” J. Chem. Phys. 2009, 130, 164313.
3.35. Tripathi J.K.; Pandey P.S.; Srivastava P.C., “A study on swift (~ 100MeV) heavy ion irradiated Ni films on Si substrates,” Nucl. Instrum. Methods Phys. B 2007, 262, 51
3.36. Chen, Y. Z.; Peng, D. L.; Lin, D. P.; Luo, X. H., “Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines,” Nanotechnology 2007, 18.
3.37. Yuan, C. L., “Room-Temperature Coercivity of Ni/NiO Core/Shell Nanoparticles Fabricated by Pulsed Laser Deposition,” J. Phys. Chem. C 2010, 114, 2124-2126.
3.38. Li, Z. J.; Wen, G. H.; Wang, F. W.; Yu, J. L.; Dong, X. L.; Zhang, X. X.; Zhang, Z. D., “Magnetic properties of Ni nanoparticles and Ni(C) nanocapsules,” J. Mater. Sci. Technol. 2002, 18, 99-100.
3.39. Chen, J. Y.; Wiley, B. J.; Xia, Y. N., “One-dimensional nanostructures of metals: large-scale synthesis and some potential applications,” Langmuir 2007, 23, 4120-4129.
3.40. Wiley, B. J.; Wang, Z. H.; Wei, J.; Yin, Y. D.; Cobden, D. H.; Xia, Y. N., “Synthesis and Electrical Characterization of Silver Nanobeams,” Nano Lett. 2006, 6, 2273-2278.
3.41. Hu L.; Wu H.; Cui Y., “Metal nanogrids, nanowires, and nanofibers for transparent electrodes,” MRS Bull. 2011, 36, 760-765 
Chapter 4
4.1.Yang, C.; Zhong, Z. H.; Lieber, C. M., “Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires.,” Science 2005, 310 , 1304-1307.
4.2. Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q., “One-dimensional nanostructures: Synthesis, characterization, and applications,” Adv. Mater. 2003, 15, 353-389.
4.3. Pan, Z.W.; Dai, Z.R.; and Wang, Z.L., “Nanobelts of semiconducting oxides,” Science, 2001, 291, 1947-1949.
4.4. Frank, S.; Poncharal, P.; Wang, Z.L.; de Heer, Walt. A., “Carbon nanotube quantum resistors,” Science, 1998, 280, 1744-1746.
4.5. Chen, J. Y.; Wiley, B. J.; Xia, Y. N., “One-dimensional nanostructures of metals: Large-scale synthesis and some potential applications,” Langmuir 2007, 23, 4120-4129.
4.6. Ohnishi, H.; Kondo, Y.; Takayanagi, K., “Quantized conductance through individual rows of susended gold atoms,” Nature 1998, 395, 780-783.
4.7. Kondo, Y.; Takayanagi, K., “Synthesis and characterization of helical multi-shell gold nanowires,” Science 2000, 289, 606-608.
4.8. Corti, C. W.; Holliday R. J.; Thompson D. T., “Developing new industrial applications for gold: Gold nanotechnology,” Gold Bull. 2002, 35, 111-117.
4.9. Krenn, J. R.; Lamprecht, B.; Ditlbacher, H.; Schider, G.; Salerno, M.; Leitner A.; Aussenegg, F. R., “Non–diffraction-limited light transport by gold nanowires,” Europhys. Lett. 2002, 60, 663
4.10. Lu, Y.; Yang, M.; Qu, F.; Shen, G.; Yu, R., “Enzyme-functionalized gold nanowires for the fabrication of biosensors,” Bioelectrochemistry 2007, 71, 211-216
4.11. Djalali, R.; Chen, Y.; Matsui, H., “Au nanowire fabrication from sequenced histidine-rich peptide,” J. Am. Chem. Soc. 2002, 124, 13660-13661.
4.12. Halder, A.; Ravishankar, N., “Ultrafine single-crystalline gold nanowire arrays by oriented attachment,” Adv. Mater. 2007, 19, 1854.
4.13. Huo, Z. Y.; Tsung, C. K.; Huang, W. Y.; Zhang, X. F.; Yang, P. D., “Sub-two nanometer single crystal Au nanowires,” Nano Lett. 2008, 8, 2041-2044.
4.14. Dangwal, A.; Pandey, C. S.; Muller, G.; Karim, S.; Cornelius, T. W.; Trautmann, C., “Field emission properties of electrochemically deposited gold nanowires,” Appl. Phys. Lett. 2008, 92.
4.15. Navitski, A.; Muller, G.; Sakharuk, V.; Cornelius, T. W.; Trautmann, C.; Karim, S., “Efficient field emission from structured gold nanowire cathodes,” Eur. Phys. J-Appl. Phys. 2009, 48.
4.16. Zhang, G. M.; Emmanuel, R.; Liu, H. W.; Liu, W. M.; Hou, S. M.; Kui, Y. Z.; Xue, Z. Q., “Field emission from an array of free-standing metallic nanowires,” Chinese Phys. Lett. 2002, 19 , 1016-1018.
4.17. Okamoto, H.; T. B. Massalski, Phase diagrams of binary gold alloys. American Society for Metals International Ohio, 1987.
4.18. Tepper, T.; Shechtman, D.; vanHeerden, D.; Josell, D., “fcc titanium in titanium/silver multilayers,” Mater. Lett. 1997, 33, 181-184.
4.19. Pong, B. K.; Elim, H. I.; Chong, J. X.; Ji, W.; Trout, B. L.; Lee, J. Y., “New Insights on the Nanoparticle Growth Mechanism in the Citrate Reduction of Gold(III) Salt: Formation of the Au Nanowire Intermediate and Its Nonlinear Optical Properties,” J. Phys. Chem. C 2007, 111, 6281-6287
4.20. Swanson, H. E.; Fuyat, R. K.; Ugrinic, G. M., National Bureau of Standards Circular 1954.
4.21. Ozturk, B.; Flanders, B. N.; Grischkowsky, D. R.; Mishima, T. D., “Single-step growth and low resistance interconnecting of gold nanowires,” Nanotechnology, 2007, 18, 175707-1757014
4.22. Huang, T. K.; Chen, Y. C.; Ko, H. C.; Huang, H. W.; Wang, C. H.; Lin, H. K.; Chen, F. R.; Kai, J. J.; Lee, C. Y.; Chiu, H. T., “Growth of high-aspect-ratio gold nanowires on silicon by surfactant-assisted galvanic reductions,” Langmuir. 2008, 24, 5647-5649.
4.23. Chueh, Y. L.; Ko, M. T.; Chou, L. J.; Chen, L. J.; Wu, C. S.; Chen, C. D., “TaSi2 nanowires: A potential field emitter and interconnect,” Nano Lett. 2006, 6, 1637-1644.
4.24. Chang, C. M.; Chang, Y. C.; Chung, Y. A.; Lee, C. Y.; Chen, L. J., “Synthesis and Properties of the Low Resistivity TiSi2 Nanowires Grown with TiF4 Precursor,” J. Phys. Chem. C 2009, 113, 17720-17723.
4.25. Lin, H. K.; Tzeng, Y. F.; Wang, C. H.; Tai, N. H.; Lin, I. N.; Lee, C. Y.; Chiu, H. T., “Ti5Si3 nanowire and its field emission property,” Chem. Mater. 2008, 20, 2429-2431.
4.26. Liu, Z. H.; Zhang, H.; Wang, L.; Yang, D. R., “Controlling the growth and field emission properties of silicide nanowire arrays by direct silicification of Ni foil,” Nanotechnology 2008, 19.
4.27. Lee, C. Y.; Lu, M. P.; Liao, K. F.; Lee, W. F.; Huang, C. T.; Chen, S. Y.; Chen, L. J., “Free-Standing Single-Crystal NiSi2 Nanowires with Excellent Electrical Transport and Field Emission Properties,” J. Phys. Chem. C 2009, 113, 2286-2289.
4.28. Tsai, C. I.; Yeh, P. H.; Wang, C. Y.; Wu, H. W.; Chen, U. S.; Lu, M. Y.; Wu, W. W.; Chen, L. J.; Wang, Z. L., “Cobalt Silicide Nanostructures: Synthesis, Electron Transport, and Field Emission Properties,” Cryst. Growth Des. 2009, 9, 4514-4518.
4.29. Fowler, R. H.; Nordheim, L., “Electron emission in intense electric fields” Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character 1928, 119, 173-181.
4.30. Michaelson, H. B., “Work Function of Elements and Its Periodicity,” J. Appl. Phys. 1977, 48, 4729-4733.
4.31. Pradhan, D.; Kumar, M.; Ando, Y.; Leung, K. T., “Efficient field emission from vertically grown planar ZnO nanowalls on an ITO-glass substrate,” Nanotechnology 2008, 19.
4.32. Huang, K.; Pan, Q. T.; Yang, F.; Ni, S. B.; He, D. Y., “The catalyst-free synthesis of large-area tungsten oxide nanowire arrays on ITO substrate and field emission properties,” Mater. Res. Bull. 2008, 43, 919-925.
4.33. She, J. C.; Xiao, Z. M.; Yang, Y. H.; Deng, S. Z.; Chen, J.; Yang, G. W.; Xu, N. S., “Correlation between Resistance and Field Emission Performance of Individual ZnO One-Dimensional Nanostructures,” Acs Nano 2008, 2, 2015-2022.
4.34. Xu, Z.; Bai, X. D.; Wang, E. G.; Wang, Z. L., “Field emission of individual carbon nanotube with in situ tip image and real work function,” Appl. Phys. Lett. 2005, 87.
4.35. Fursey, G. N.; Baskin, L. M.; Glazanov, D. V.; Yevgen'ev, A. O.; Kotcheryzhenkov, A. V.; Polezhaev, S. A., “Specific features of field emission from submicron cathode surface areas at high current densities,” J. Vac. Sci. Technol. B 1998, 16, 232-237.
4.36. Ribaya, B. P.; Leung, J.; Brown, P.; Rahman, M.; Nguyen, C. V., “A study on the mechanical and electrical reliability of individual carbon nanotube field emission cathodes,” Nanotechnology 2008, 19.
4.37. Kim, J. J.; Shindo, D.; Murakami, Y.; Xia, W.; Chou, L. J.; Chueh, Y. L., “Direct observation of field emission in a single TaSi2 nanowire,” Nano Lett. 2007, 7, 2243-2247. 
Chapter 5
5.1. Dresselhaus M. S.; Thomas I. L., “Alternative energy technologies,” Nature 2001, 414, 332.
5.2. Wang Z. L., “Self-powering nanotech,” Sci. Am. 2008, 298, 82.
5.3. Wang Z. L., “Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics,” Adv. Funct. Mater. 2008, 18, 3553.
5.4. Qin Y.; Wang X. D.; Wang Z. L., “Microfiber-nanowire hybrid structure for energy scavenging,” Nature 2008, 451, 809.
5.5. Wang X. D.; Song J. H.; Liu J.; Wang Z. L., “Direct-Current Nanogenerator Driven by Ultrasonic Waves,” Science 2007, 316, 102.
5.6. Yang R. S.; Qin Y.; Dai L. M.; Wang Z. L., “Power generation with laterally packaged piezoelectric fine wires,” Nat. Nanotechnol. 2009, 4, 34.
5.7. Jung J. H.; Lee M.; Hong J. I.; Ding Y.; Chen C. Y.; Chou L. J.; Wang Z. L., “Lead-free NaNbO3 nanowires for a high-output piezoelectric nanogenerator,” ACS Nano 2011, 5, 10041.
5.8. Vayssieres L., “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions,” Adv. Mater. 2003, 15, 464.
5.9. Pan Z. W.; Dai Z. R.; Wang Z. L., “Nanobelts of semiconducting oxides,” Science 2001, 291, 1947.
5.10. Xu S.; Wang Z. L., “One-dimensional ZnO nanostructures: Solution growth and functional properties,” Nano Res. 2011, 4, 1013.
5.11. Vinogradov A. M.; Schumacher S. C.; Rassi E. M., “Dynamic response of the piezoelectric polymer PVDF,” Int. J. Appl. Electrom. 2005, 22, 39.
5.12. Nalwa H. S.; Ferroelectric polymer, Part I, Marcel Dekker, Inc, New York 1995 Ch. 2, 3
5.13. Kang S. J.; Park Y. J.; Sung J.; Jo P. S.; Park C.; Kim K. J.; Cho B. O., “Spin cast ferroelectric beta poly(vinylidene fluoride) thin films via rapid thermal annealing,” Appl. Phys. Lett. 2008, 92, 012921.
5.14. Hu Y. F.; Zhang Y.; Xu C.; Zhu G. A.; Wang Z. L., “High-Output Nanogenerator by Rational Unipolar Assembly of Conical Nanowires and Its Application for Driving a Small Liquid Crystal Display,” Nano Lett. 2010, 10, 5025.
5.15. Park K. I.; Xu S.; Liu Y.; Hwang G. T.; S. Kang J. L.; Wang Z. L.; Lee K. J., “Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates,” Nano Lett. 2010, 10, 4939.
5.16. Lee M.; Bae J.; Lee J.; Lee C. S.; Hong S.; Wang Z. L., “Self-powered environmental sensor system driven by nanogenerators,” Energ. Environ. Sci. 2011, 4, 3359.
5.17. Zhu G. A.; Yang R. S.; Wang S. H.; Wang Z. L., “Flexible high-output nanogenerator based on lateral ZnO nanowire array,” Nano Lett. 2010, 10, 3151.
5.18. Omote K.; Ohigashi H.; Koga K., “Temperature dependence of elastic, dielectric, and piezoelectric properties of "single crystalline" films of vinylidene fluoride-trifluoroethylene copolymer,” J. Appl. Phys. 1997, 81, 2760.
5.19. Hu Y.; Lin L.; Zhang Y.; Wang Z. L., “Replacing a Battery by a Nanogenerator with 20 V Output,” Adv. Mater. 2012, 24, 110.

Chapter 6
6.1. Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M., “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 2007, 449, 885.
6.2. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D., “Nanowire dye-sensitized solar cells,” Nat. Mater. 2005, 4, 455-459.
6.3. Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W., “Nanostructured materials for advanced energy conversion and storage devices,” Nat. Mater. 2005 4, 366-377.
6.4. Boukai, A. I.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J. K.; Goddard, W. A.; Heath, J. R., “Silicon nanowires as efficient thermoelectric materials,” Nature 2008, 451, 168-171.
6.5. Wang, Z. L.; Song, J. H., “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays,” Science 2006, 312, 242-246.
6.6. Wang, Z. L., “Progress in Piezotronics and Piezo-Phototronics,” Adv. Mater. 2012, DOI: 10.1002/adma.201104365
6.7. Xu, S.; Qin, Y.; Xu, C.; Wei, Y. G.; Yang, R. S.; Wang, Z. L., “Self-powered nanowire devices,” Nat. Nanotechnol. 2010, 5, 366-373.
6.8. Ozgur, U.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A. ; Dogan, S.; Avrutin, V.; Cho, S. J.; Morkoc, H., “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 2005, 98, 04301.
6.9. Lee, M.; Chen, C. Y.; Wang, S.; Cha, S. N.; Park, Y. J.; Kim, J. M.; Chou, L. J.; Wang, Z. L., “A Hybrid Piezoelectric Structure for Wearable Nanogenerators,” Adv. Mater. 2012, 24, 1759-1764.
6.10. Huang, C. T.; Song, J. H.; Lee, W. F.; Ding, Y.; Gao, Z. Y.; Hao, Y.; Chen, L. J.; Wang, Z. L., “GaN Nanowire Arrays for High-Output Nanogenerators,” J. Am. Chem. Soc. 2010, 132, 4766-4771.
6.11. Bernardini, F.; Fiorentini, V.; Vanderbilt, D., “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 1997, 56, 10024-10027
6.12. Lin, L.; Lai, C. H.; Hu, Y. F.; Zhang, Y.; Wang, X.; Xu, C.; Snyder, R. L.; Chen, L. J.; Wang, Z. L., “High output nanogenerator based on assembly of GaN nanowires,” Nanotechnology 2011, 22, 475401.
6.13. Lee, M.; Bae, J.; Lee, J.; Lee, C. S.; Hong, S.; Wang, Z. L., “Self-powered environmental sensor system driven by nanogenerators,” Energ. Environ. Sci. 2011, 4, 3359-3363.
6.14. Wang, Z. L., “Self-Powered Nanosensors and Nanosystems,” Adv. Mater. 2012, 24, 280-285
6.15. Hu, Y. F.; Lin, L.; Zhang, Y.; Wang, Z. L., “Replacing a Battery by a Nanogenerator with 20 V Output,” Adv. Mater. 2012, 24, 110.
6.16. Reshchikov, M. A. and Morkoc, H., “Luminescence properties of defects in GaN,” J. Appl. Phys. 2005, 97, 06301.
6.17. Wang, Z. L., “Piezopotential gated nanowire devices Piezotronics and piezo-phototronics,” Nano Today 2010, 5, 540-552
6.18. Wang, Z. L.; Yang, R. S.; Zhou, J.; Qin, Y.; Xu, C.; Hu, Y. F.; Xu, S., “Lateral nanowire nanobelt based nanogenerators, piezotronics and piezo-phototronics,” Mater. Sci. Eng. R 2010, 70, 320-329
6.19. Huang, Y.; Duan, X. F.; Cui, Y.; Lieber, C. M. “Gallium nitride nanowire nanodevices” Nano Lett. 2002, 2, 101-104
6.20. Johnson, J. C.; Choi, H. J.; Knutsen, K. P.; Schaller, R. D.; Yang, P. D.; Saykally, R. J., “Single gallium nitride nanowire lasers,” Nat. Mater. 2002, 1, 106-110
6.21. Chen, C. C.; Yeh, C. C.; Chen, C. H.; Yu, M. Y.; Liu, H. L.; Wu, J. J.; Chen, K. H.; Chen, L. C.; Peng, J. Y.; Chen, Y. F., “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc. 2001, 123, 2791-2798
6.22. Li, G.; Chua, S. J.; Xu, S. J.; Wang, W.; Li, P.; Beaumont, B.; Gibart, P., “Nature and elimination of yellow-band luminescence and donor–acceptor emission of undoped GaN,” Appl. Phys. Lett. 1999, 74, 2821-2823
6.23. Hofmann, D. M.; Kovalev, D.; Steude, G.; Meyer, B. K.; Hoffmann, A.; Eckey, L.; Heitz, R.; Detchprom, T.; Amano, H.; Akasaki, I., “Properties of the yellow luminescence in undoped GaN epitaxial layers,” Phys. Rev. B 1995, 52, 16702-16706
6.24. Carter, D. J.; Gale, J. D.; Delley, B.; Stampfl, C., “Geometry and diameter dependence of the electronic and physical properties of GaN nanowires from first principles,” Phys. Rev. B 2008, 77, 12. 115339.
6.25. Yeh, P. C.; Hwa, M. C.; Yu, J. W.; Wu, H. M.; Tsai, H. L.; Lai, C. M.; Huang, J. J.; Yang, J. R.; Peng, L. H., “Photon-assisted tunneling in GaN nanowire white light emitting diodes,” Phys. Status Solidi C 2009, 6, 538-540.
6.26. Hu, Y. F.; Zhang, Y.; Xu, C.; Zhu, G. A.; Wang, Z. L., “High-Output Nanogenerator by Rational Unipolar Assembly of Conical Nanowires and Its Application for Driving a Small Liquid Crystal Display,” Nano Lett. 2010, 10
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊