跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 18:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉曉萍
研究生(外文):Liu, Hsiao-Ping
論文名稱:利用簡易合成方法所得氮氧化鈦的濾膜做為超級電容器的應用上
論文名稱(外文):Facile Synthesis of Free-standing Titanium Oxynitride Sheets as A Supercapacitor
指導教授:李紫原
指導教授(外文):Lee, Chi-Young
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:77
中文關鍵詞:自支撐薄膜氮氧化鈦超級電容
外文關鍵詞:free-standing membranetitanium oxynitridesupercapacitor
相關次數:
  • 被引用被引用:7
  • 點閱點閱:417
  • 評分評分:
  • 下載下載:173
  • 收藏至我的研究室書目清單書目收藏:0
本研究中先行利用水熱法和酸洗步驟得到鈦酸氫的自支撐薄膜。
藉由氨氣體氛圍下高溫熱處理可得到氮氧化鈦的自支撐薄膜。
此氮氧化鈦的自支撐薄膜同時具有高導電性,化學穩定性和多種
價數態的金屬氧化物,因此可做為超級電容的應用。於合成的氮氧化
鈦的自支撐薄膜中,以中孔洞奈米纖維的N64 樣品有著電容最好的表
現(5 mVs-1, 572.7 Fg-1) 。且氮氧化鈦相較於其他超級電容材
料有著便宜和製備簡單的優點,更由於氮氧化鈦為單一材料,更避免了
複合材料的界面問題。這些結果都顯示了N64 樣品可作為優異的一個超
級電容的材料。
另外,本研究中也利用N64 樣品組成一個簡單的兩極式固態電
容器元件,從這固態電容器的測試中再次驗證N64 元件為典型的超
級電容行為,且相較於熟知的超級電容器材料有較大的工作電位視窗。
因此,氮氧化鈦材料於日後應用於超級電容器上具有相當潛力。
In this study, titanium oxynitride sheets were obtained by nitration using hydroxo titanate with as prepared by hydrothermal method as the precursor under ammonia atmosphere at different temperature.
Titanium oxynitride sheets would be used in supercapacitors due to its high conductivity, chemical stability and multi oxidation states.
Among these sheets, N64 show excellent capacitance (5 mVs-1, 572.7 Fg-1). This is a cost-effective and simple preparation for a single-material supercapacitor, thereby eliminating the concern for a junction. The titanium oxynitride sheets, composed of mesoporous nanofibers with high porosity and multi-oxidation state of the center metal, exhibit both electric double-layer and pseudocapacitance significantly. These results demonstrate that this material can be a promising electrode material for supercapacitors for energy storage.
In addition, a supercapacitor device of two electrodes system was successfully prepared by assembling two FSM of N64 which were sandwiched within PVA/H2SO4. It shown that N64 is a typical behavior of supercapacitor with large working window. This suggests that N64 may play a potential role in electrode material for further electrochemical
applications.
摘 要 ............................................................................................ I
Abstract ...................................................................................... II
總目錄 ....................................................................................... III
圖目錄 ........................................................................................VI
表目錄 ................................................................................................... XII
第一章 序論 ................................................................................ 1
1.1 序論 .............................................................................................. 1
1.2 研究動機 ..................................................................................... 2
第二章 文獻回顧 ........................................................................ 4
2.1 氮氧化鈦基本性質,合成和應用 .............................................. 4
2.2 超級電容的簡介和應用 .............................................................. 7
2.2.1 儲能系統的簡介 ................................................................ 7
2.2.2 超級電容的簡介 .............................................................. 10
2.3 超級電容的儲電原理和材料介紹 ............................................ 13
2.3.1 超級電容儲電原理:電雙層電容機制 ............................. 13
2.3.2 超級電容儲電原理: 擬電容機制 .................................... 16
2.3.3 超級電容之電雙層電容材料 ........................................... 17
2.3.3.1 活性碳 .................................................................... 17
2.3.3.2 奈米碳管 ................................................................ 19
2.3.4 超級電容之擬電容材料 ................................................... 20
2.3.4.1 二氧化錳 ................................................................ 21
2.3.4.2 過渡金屬氮化物 .................................................... 22
第三章 實驗 .............................................................................. 24
3.1 實驗藥品 .................................................................................... 24
3.2 實驗合成 ................................................................................... 25
3.2.1 合成鈦酸氫的自支撐薄膜 ............................................... 25
3.2.2 將鈦酸氫轉換成氮氧化鈦 ............................................... 25
3.2 實驗分析 ................................................................................... 26
3.3.1 分析儀器 ........................................................................... 26
3.3.2 電容的測試原理 ............................................................... 29
第四章 結果與討論 ................................................................. 33
4.1 合成鈦酸氫的自支撐薄膜 ........................................................ 33
4.2 合成二氧化鈦的自支撐薄膜 .................................................... 37
4.3 合成氮氧化鈦的自支撐薄膜 .................................................... 40
4.4 氮氧化鈦的電化學活性表面積 ............................................... 47
4.5 最佳化電解液條件和電位視窗 ............................................... 51
4.6 氮氧化鈦材料於循環伏安法測試 ........................................... 53
4.7 氮氧化鈦材料於定電流充放電法測試 ................................... 58
4.8 氮氧化鈦材料於穩定性測試 ................................................... 61
4.9 氮氧化鈦材料於電化學阻抗頻譜分析 ................................... 62
4.10 氮氧化鈦材料應於於固態電容器之上 ................................. 65
第五章 結論與未來展望 ......................................................... 70
5.1 結論 ............................................................................................ 70
5.2 未來展望 ................................................................................... 73
參考文獻 .................................................................................... 74
1. A. Fujishima and K. Honda, Nature, 1972, 238, 37.
2. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science,
2001, 293, 269.
3. Y.-J. Wei, C.-W. Peng, T.-M. Cheng, H.-K. Lin, Y.-L. Chen, C.-Y.
Lee and H.-T. Chiu, ACS Appl. Mater. Interfaces, 2011, 3, 3804.
4. M. Zukalova, J. Prochazka, Z. Bastl, J. Duchoslav, L. Rubacek, D.
Havlicek and L. Kavan, Chem. Mater., 2010, 22, 4045.
5. S. A. Sherrill, J. Duay, Z. Gui, P. Banerjee, G. W. Rubloff and S. B.
Lee, PCCP, 2011, 13, 15221.
6. X. Zhou, C. Shang, L. Gu, S. Dong, X. Chen, P. Han, L. Li, J. Yao,
Z. Liu, H. Xu, Y. Zhu and G. Cui, ACS Appl. Mater. Interfaces,
2011, 3, 3058.
7. D. Sun, J. Lang, X. Yan, L. Hu and Q. Xue, J. Solid State Chem.,
2011, 184, 1333.
8. S. Dong, X. Chen, L. Gu, X. Zhou, L. Li, Z. Liu, P. Han, H. Xu, J.
Yao, H. Wang, X. Zhang, C. Shang, G. Cui and L. Chen, Energy
Environ. Sci., 2011, 4, 3502.
9. H. Kiyono, T. Tsumura, T. Kiyo, M. Toyoda and S. Shimada,
Ceram. Int., 2011, 37, 1813.
10. A. Ortega, M. A. Roldan and C. Real, Int. J. Chem. Kinet., 2005,
37, 566.
11. H. Zhang, F. Li and Q. Jia, Ceram. Int., 2009, 35, 1071-1075.
12. A. Fischer, P. Makowski, J.-O. Müller, M. Antonietti, A. Thomas
and F. Goettmann, ChemSusChem, 2008, 1, 444.
13. Y. Huang, Y. Gu, M. Zheng, Z. Xu, W. Zeng and Y. Liu, Mater.
Lett., 2007, 61, 1056.
14. U. A. Joshi, S. H. Chung and J. S. Lee, J. Solid State Chem., 2005,
178, 755.
15. J. F. Sun, M. Z. Wang, Y. C. Zhao, X. P. Li and B. Y. Liang, J.
Alloys Compd., 2009, 482, L29.
16. B. Kosowska, S. Mozia, A. W. Morawski, B. Grzmil, M. Janus and
K. Kałucki, Sol. Energy Mater. Sol. Cells, 2005, 88, 269.
17. J. Li, L. Gao, J. Sun, Q. Zhang, J. Guo and D. Yan, J. Am. Ceram.
Soc., 2001, 84, 3045.
18. M. Gartner, P. Osiceanu, M. Anastasescu, T. Stoica, T. F. Stoica, C.
Trapalis, T. Giannakopoulou, N. Todorova and A. Lagoyannis, Thin Solid Films, 2008, 516, 8184.
19. A. Rizzo, M. A. Signore, L. Mirenghi and T. Di Luccio, Thin Solid
Films, 2009, 517, 5956.
20. M.-H. Chan and F.-H. Lu, Thin Solid Films, 2009, 517, 5006.
21. A. Trenczek-Zajac, M. Radecka, K. Zakrzewska, A. Brudnik, E.
Kusior, S. Bourgeois, M. C. M. de Lucas and L. Imhoff, J. Power
Sources, 2009, 194, 93.
22. X. Song, D. Gopireddy and C. G. Takoudis, Thin Solid Films, 2008,
516, 6330.
23. J. Musschoot, Q. Xie, D. Deduytsche, S. Van den Berghe, R. L.
Van Meirhaeghe and C. Detavernier, Microelectron. Eng., 2009, 86,
72.
24. Q. W. Jiang, G. R. Li and X. P. Gao, Chem. Commun., 2009, 6720.
25. M.-H. Yeh, L.-Y. Lin, C.-P. Lee, H.-Y. Wei, C.-Y. Chen, C.-G. Wu,
R. Vittal and K.-C. Ho, J. Mater. Chem., 2011, 21, 19021.
26. G. Mangamma, P. K. Ajikumar, R. Nithya, T. N. Sairam, V. K.
Mittal, M. Kamruddin, S. Dash and A. K. Tyagi, J. Phys. D: Appl.
Phys., 2007, 40, 4597.
27. M.-C. Tsai, J.-C. Chang, H.-S. Sheu, H.-T. Chiu and C.-Y. Lee,
Chem. Mater., 2009, 21, 499.
28. P.-C. Chen, M.-C. Tsai, H.-C. Chen, I. N. Lin, H.-S. Sheu, Y.-S. Lin,
J.-G. Duh, H.-T. Chiu and C.-Y. Lee, J. Mater. Chem., 2012, 22,
5349.
29. S.-P. Tung, T.-K. Huang, C.-Y. Lee and H.-T. Chiu, RSC Advances,
2012, 2, 1068.
30. X. Lu, D. Zheng, T. Zhai, Z. Liu, Y. Huang, S. Xie and Y. Tong,
Energy Environ. Sci., 2011, 4, 2915.
31. X. Lu, T. Zhai, X. Zhang, Y. Shen, L. Yuan, B. Hu, L. Gong, J.
Chen, Y. Gao, J. Zhou, Y. Tong and Z. L. Wang, Adv. Mater., 2012,
24, 938.
32. M. Winter and R. J. Brodd, Chem. Rev., 2004, 104, 4245.
33. J. M. Tarascon and M. Armand, Nature, 2001, 414, 359.
34. R. Kötz and M. Carlen, Electrochim. Acta, 2000, 45, 2483.
35. H. V. Helmholtz, Ann. Phys. (Leipzig), 1853, 21.
36. G. Gouy, J. Phys., 1910, 4, 457.
37. D. L. Chapman, Philos. Mag, 1913, 6, 475.
38. O. Stern, Z. Electrochem., 1924, 30, 508.
39. L. L. Zhang and X. S. Zhao, Chem. Soc. Rev., 2009, 38, 252.
40. Q.-Y. Li, Z.-S. Li, L. Lin, X. Y. Wang, Y.-F. Wang, C.-H. Zhang
and H.-Q. Wang, Chem. Eng. J., 2010, 156, 500.
41. K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz and J.
Machnikowski, Electrochim. Acta, 2004, 49, 515.
42. E. Raymundo-Piñero, F. Leroux and F. Béguin, Adv. Mater., 2006,
18, 1877.
43. E. Frackowiak, K. Jurewicz, S. Delpeux and F. Béguin, J. Power
Sources, 2001, 97–98, 822.
44. T. Bordjiba, M. Mohamedi and L. H. Dao, Adv. Mater., 2008, 20,
815.
45. C.-C. Hu, C.-C. Wang and K.-H. Chang, Electrochim. Acta, 2007,
52, 2691.
46. S. Devaraj and N. Munichandraiah, Electrochem. Solid-State Lett.,
2005, 8, A373.
47. M. Toupin, T. Brousse and D. Bélanger, Chem. Mater., 2004, 16,
3184.
48. M. Toupin, T. Brousse and D. Bélanger, Chem. Mater., 2002, 14,
3946.
49. J.-K. Chang, M.-T. Lee and W.-T. Tsai, J. Power Sources, 2007,
166, 590.
50. C. Ye, Z. M. Lin and S. Z. Hui, J. Electrochem. Soc., 2005, 152,
A1272.
51. U.S. Patent, 2800616, 1957.
52. T.-C. Liu, W. G. Pell, B. E. Conway and S. L. Roberson, J.
Electrochem. Soc., 1998, 145, 1882.
53. D. Choi and P. N. Kumta, Electrochem. Solid-State Lett., 2005, 8,
A418.
54. X. Zhang, J. H. Pan, A. J. Du, W. Fu, D. D. Sun and J. O. Leckie,
Water Res., 2009, 43, 1179.
55. X. Zhang, T. Zhang, J. Ng and D. D. Sun, Adv. Funct. Mater., 2009,
19, 3731.
56. R. Yoshida, Y. Suzuki and S. Yoshikawa, J. Solid State Chem.,
2005, 178, 2179.
57. X. Zhang, A. J. Du, P. Lee, D. D. Sun and J. O. Leckie, J. Membr.
Sci., 2008, 313, 44.
58. A. R. Armstrong, G. Armstrong, J. Canales and P. G. Bruce, Angew.
Chem. Int. Ed., 2004, 43, 2286.
59. Z.-Y. Yuan and B.-L. Su, Colloid Surf. A-Physicochem. Eng. Asp,2004, 241, 173.
60. X. Zhou, C. Shang, L. Gu, S. Dong, X. Chen, P. Han, L. Li, J. Yao,
Z. Liu, H. Xu, Y. Zhu and G. Cui, ACS Applied Materials &;
Interfaces, 2011, 3, 3058.
61. Y. Qiu and L. Gao, J. Phys. Chem. B, 2005, 109, 19732.
62. J.-H. Kim, K. Zhu, Y. Yan, C. L. Perkins and A. J. Frank, Nano
Lett., 2010, 10, 4099.
63. Y. Yang, D. Kim, M. Yang and P. Schmuki, Chem. Commun., 2011,
47, 7746.
64. S. Dong, X. Chen, L. Gu, X. Zhou, H. Xu, H. Wang, Z. Liu, P. Han,
J. Yao, L. Wang, G. Cui and L. Chen, ACS Appl. Mater. Interfaces,
2010, 3, 93.
65. M. Salari, K. Konstantinov and H. K. Liu, J. Mater. Chem., 2011,
21, 5128.
66. D.-D. Zhou, H.-J. Liu, Y.-G. Wang, C.-X. Wang and Y.-Y. Xia, J.
Mater. Chem., 2012, 22, 1937.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top