跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/01/30 13:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李佳樺
研究生(外文):Lee, Chia-Hua
論文名稱:軟性鈦基板染料敏化太陽能電池中緩衝層之研究及老化機制分析
論文名稱(外文):Investigation of Buffer Layer and Degradation Mechanism Analysis of Flexible Ti Substrate Dye-Sensitized Solar Cell
指導教授:吳振名
指導教授(外文):Wu, Jenn-Ming
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:157
中文關鍵詞:背照式結構老化分析染料敏化太陽能電池可撓式鈦基板
外文關鍵詞:back-illuminated typedegradation analysisdye-sensitized solar cellflexibleTi substrate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
染料敏化太陽能電池(DSSC)因其材料成本低,製程與製程設備簡單,蔚然成為學術界與工業界的研發項目。高效率的染料敏化太陽能電池的光電極(photoelectrode)是利用奈米顆粒金屬氧化物半導體顆粒,塗佈在透明導電玻璃上。金屬箔具有輕、薄且可撓曲的特性,鈦金屬箔具備優異的物理與化學特性,利用鈦金屬箔取代厚重的透明導電玻璃,可擴展染料敏化太陽能電池的應用。
鈦金屬基板與電解液界面產生的再結合反應(recombination)是降低元件效率的因素之一,若要進一步提高光電極中光電子的收集效率,必須降低鈦金屬界面因再結合反應而產生的逆電流。鈦金屬箔做為光電極基板,元件為背照式結構,入射光必須經過對電極與電解液,部分入射光被吸收。對泰金屬光電極元件而言,提高光利用率是提高元件效率的重要關鍵。
在鈦基板上製備緩衝層(buffer layer),可抑制逆電流產生。本文利用過氧化氫(H2O2)預處理鈦基板,可去除鈦基板表面氧化物鈍化層,並形成海綿狀緩衝層,此緩衝層不但可抑制暗電流,亦增加基板與奈米二氧化鈦顆粒之間接觸面積,增加兩者附著。以電化學交流阻抗分析證實,預處理的鈦基板可大幅降低奈米二氧化鈦與基板之間電荷轉移阻抗,延長電子壽命,增加電子收集效率。與未預處理基板比較,具備海綿狀緩衝層鈦基板元件之填充因子與開路電壓較高,因此有效提高元件轉換效率。
利用過氧化氫添加鹼預處理鈦基板,鈦基板表面形成溝槽狀排列的緩衝層。與未處理基板比較,此溝槽狀排列的緩衝層,可增加與奈米二氧化鈦接觸面積,增加附著,降低電荷轉移阻抗,提高元件填充因子。此緩衝層亦可扮演抑制逆電流腳色,提高元件開路電壓。與未處理鈦基板或海綿結構緩衝層比較,此溝槽狀排列結構,可提高入射單色光子-電子轉換效率與短路電流,元件效率有顯著提升。測量此溝槽狀緩衝層鈦基板之紫外/可見光反射光譜,其反射光譜與N719染料之吸收光譜較一致,證明了溝槽狀緩衝層亦可做為背反射層,增加元件光利用率。最佳化溝槽狀緩衝厚度,鈦基板染料敏化太陽能電池最佳效率達7.28%。
太陽能電池研究除了提高效率,長效穩定性(long term stability)的提升也是研究太陽能電池的一大重點。本文利用電化學交流阻抗分析與掃描式電子顯微鏡分析,鈦基板染料敏化太陽能電池經過熱老化測試失效模式,鈦基板染料敏化太陽能電池經過熱老化,白金對電極劣化造成填充因子下降,是效率下降的主因。將白金對電極浸泡在電解液的個別組成成分,經過老化測試後,後利用循環伏安法(CV)分析期催化能力變化,發現碘(I2)或鋰離子(Li+)和水共存時,是造成白金對電極劣化的因素。

Dye-sensitized solar cell (DSSC) has received increasing interest, which achieved moderate conversion efficiency using low cost material and simple manufacturing apparatus. The high efficiencies of DSSCs have been achieve using TiO2 nanocrystalline fabricated on heavy, rigid, and expensive fluorine-doped tin-oxide (FTO) glass. Metal foil substrates enable extension of DSSCs to novel applications because they are thin, lightweight and flexible. Ti foil is an excellent alternative due to its superior physical and chemical properties.
Long-term stability and enhancement of conversion efficiency of DSSC are two important subjects for industrializing DSSCs. The recombination occurs at the Ti substrate/electrolyte is one of the factors that limit the conversion efficiency. In order to improve photovoltaic performance, it is essential to suppress the recombination loss at the Ti substrate. With back-illuminated construction, partial incident light is absorbed by counter electrode and electrolyte. The improvement of light harvesting efficiency is particularly important for Ti-based DSSC. This study introduced a feasible and efficient method to prepare blocking layer. The surface of Ti substrate could be transformed into TiO2 thin underlayer by direct oxidation method. The nature of Ti metal was utilized to fabricate underlayer, and no tricky coating process was required.
Introducing underlayer into photoelectrode could reduce the recombination with triiodide ion in the electrolyte. A sponge-like and conformal TiO2 underlayer was successfully fabricated by using hydrogen peroxide oxidation Ti foil. This underlayer serves as a charge recombination barrier layer at the nanocrystalline TiO2/substrate interface, and suppresses recombination reaction. This sponge-like TiO2 underlayer increases the electrical contact area between the Ti substrate and nanocrystalline TiO2 helping nanocrystalline TiO2 attach to the Ti substrate. This study compares the performance of DSSCs that were subjected to different Ti surface treatments. Electrochemical impedance spectroscopy results confirm that the proposed sponge-like TiO2 underlayer increased the open-current voltage (VOC) and fill factor (FF) due to prolonged electron life time (eff), and minimized resistance at TiO2/Ti interface (RCT).
By using hydrogen peroxide (H2O2) with a basic NH4OH agent, a thin TiO2 layer with a grooved structure was formed on Ti substrate, and the Ti substrate was textured. This grooved TiO2 thin layer also increased the electrical contact area at the nanocrystalline TiO2/Ti substrate interface, leading to reduced charge transfer resistance and improved fill factor (FF) of dye-sensitized solar cells. The TiO2 underlayer can also serve as a charge recombination barrier layer at the Ti substrate/electrolyte interface. Compared with DSSCs with non-treated and H2O2-treated Ti substrates, the DSSC with H2O2/NH4OH-treated Ti substrate showed increased conversion efficiency with a significant improvement in short-circuit current density (JSC). Reflection UV-vis spectroscopy and incident photon-to-current efficiency confirmed that the increased JSC was the result of a consistent reflection spectrum with Ru complex dye absorption. Surface modification by H2O2/NH4OH combined with optimized thickness of blocking layer and minimized gap in two electrodes achieved a high efficiency of 7.28 %.
The degradation mechanism of Ti substrate-based DSSCs was studied after a thermal aging test. The deteriorated component of Ti-based DSSCs was clarified by chemical impedance spectroscopy and scanning electron microscope. This indicated that an unfavorable reaction occurred on the Pt counter electrode, leading to a decrease of the fill factor. The device components, that is, counter electrode and electrolyte, were separated from the cell to trace the degradation factor. The factors for catalytic ability degradation of counter electrode were analyzed by cyclic voltammetry. These results indicate that I2 and Li+ coupled with water led to an unfavorable reaction on Pt counter electrode, and that water content in the electrolyte may accelerate Pt degradation.

摘要 ---------------------------------------------------- i
Abstract------------------------------------------------- iii
Acknowledgements------------------------------------------vi
Table of contents---------------------------------------- viii
List of figures-------------------------------------------xiii
List of tables ------------------------------------------ xix
Nomenclatures --------------------------------------------xxii
Chapter1 Introduction-------------------------------------1
1-1 Dye-Sensitized Solar cell-----------------------------1
1-2 Construction and Operation Principle of Dye-Sensitized Solar Cell ---------------------------------------------- 5
1-2-1 Construction--------------------------------------- 5
1-2-2 Operation principle-------------------------------- 6
1-3 Motivation and Research Objectives ------------------ 10
Chapter 2 Literature Review-------------------------------13
2-1 Development in Dye-Sensitized Solar Cell -------------13
2-1-1 Sensitizer dye -------------------------------------14
2-1-2 Metal oxide --------------------------------------- 19
2-1-3 Electrolyte --------------------------------------- 21
2-1-4 Counter electrode --------------------------------- 25
2-2 Flexible Dye-Sensitized Solar Cell --------------------------------------------------------- 27
2-2-1 Plastic Conductive Substrate----------------------- 28
2-2-2 Metal Substrate ----------------------------------- 34
2-3 Blocking Layer -------------------------------------- 37
2-3-1 Blocking layer on TCO glass------------------------ 37
2-3-2 Blocking layer on metal substrate-------------------39
2-4 Approaches to Improve Light Harvesting Efficiency in Dye-Sensitized Solar Cell---------------------------------40
2-5 Stability of Flexible Dye-Sensitized Solar Cell ------42
3 Experimental ------------------------------------------ 44
3-1 Instrumental ---------------------------------------- 44
3-2 Materials and Reagents ------------------------------ 46
3-3 Preparation ----------------------------------------- 48
3-3-1 Treatment on Ti substrate ------------------------- 48
3-3-2 Nanocrystalline TiO2 Photoelectrode ----------------49
3-3-3 Electrolyte ----------------------------------------51
3-3-4 Counter electrode --------------------------------- 51
3-3-5 Assembly of Dye-Sensitized Solar Cell ------------- 53
3-4 Characterization ------------------------------------ 54
3-4-1 The reference solar spectrum distribution and solar simulator ----------------------------------------------- 54
3-4-2 IV-measurement ------------------------------------ 60
3-4-3 Incident photon-to-current conversion efficiency -- 63
3-4-5 Electrochemical impedance spectroscopy and model of the equivalent circuit -------------------------------------- 64
Chapter 4 Improved Performance of Ti Substrate Dye-Sensitized Solar Cell by Introducing a Buffer Layer on Ti Substrates-68
4-1 Experimental ---------------------------------------- 68
4-1-1 Ti surface treatment ----------------------------- 68
4-1-2 Fabrication of the DSSCs--------------------------- 69
4-2 Result and discussion --------------------------------70
4-2-1 Characterization of Ti surface treatments --------- 70
4-2-2 The effects of Ti surface treatment on DSSC Performance --------------------------------------------------------- 73
4-2-3 The Effect of TiO2 Film Thickness on Photovoltaic Performance --------------------------------------------- 81
4-2-4 Optimization of I2 Concentration in Electrolyte --- 82
4-3 Summary --------------------------------------------- 87
Chapter 5 Light Harvesting Enhancement in Ti Substrate Dye- Sensitized Solar Cells by Textured TiO2 Blocking Layer -- 89
5-1 Experimental ---------------------------------------- 89
5-1-1 Ti surface treatment ------------------------------ 89
5-1-2 Fabrication of the DSSC --------------------------- 90
5-2 Result and discussion ------------------------------- 91
5-2-1 Characterization of Ti surface treatment ---------- 91
5-2-2 Effects of Ti surface texture on DSSC Performance - 95
5-2-3 The optical property of textured-Ti substrate and IPCE --------------------------------------------------------- 97
5-2-4 The electron transport property of textured-Ti substrate of DSSC --------------------------------------------------100
5-2-5 Effect of the gap in photoelectrode and counter electrode on DSSC performance ------------------------------------105
5-2-6 Effect of TiO2 buffer layer thickness on DSSC performance --------------------------------------------------------107
5-2-7 All-flexible DSSCs base on textured-Ti foil as photoelectrode substrate and ITO/PEN as counter electrode substrate --------------------------------------------- 116
5-3 Summary --------------------------------------------------------119
Chapter 6 Degradation Analysis of Thermal Aged Back- illuminated Dye-Sensitized Solar Cell ----------------- 121
6-1 Failure mode analysis of Ti-based substrate dye-sensitized solar cell ---------------------------------------------123
6-2 Influence of water content on stability of Ti-based substrate dye-sensitized solar Cell ------------------- 125
6-3 Effect of electrolyte composition on the Pt catalytic ability after aging test--------------------------------129
6-4 Summary --------------------------------------------133
Chapter 7 Conclusions and Future Prospects -------------135
References -------------------------------------------- 139
Appendix I: The Performance of Solar Simulator -------- 154
Appendix I I Publication List---------------------------156

1. Research Cell Efficiency Records, http://www.nrel.gov/ncpv/.
2. M. Gratzel, Journal of Photochemistry and Photobiology a-Chemistry, 2004, 168, 235-235.
3. A. Hagfeldt, G. Boschloo, L. C. Sun, L. Kloo and H. Pettersson, Chemical Review, 2010, 110, 6595-6663.
4. A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin and M. Graetzel, Science, 2011, 334, 629-634.
5. M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. G. Gratzel, Journal of the American Chemical Society, 2005, 127, 16835-16847.
6. C. Y. Jiang, X. W. Sun, K. W. Tan, G. Q. Lo, A. K. K. Kyaw and D. L. Kwong, Applied Physics Letters, 2008, 92, 143101.
7. S. Ito, N. L. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Pechy, M. K. Nazeeruddin and M. Gratzel, Chemical Communications, 2006, 4004-4006.
8. Y. Saito, S. Uchida, T. Kubo and H. Segawa, Thin Solid Films, 2010, 518, 3033-3036.
9. H. G. Yun, Y. Jun, J. Kim, B. S. Bae and M. G. Kang, Applied Physics Letters, 2008, 93, 133311.
10. K. Onoda, S. Ngamsinlapasathian, T. Fujieda and S. Yoshikawa, Solar Energy Materials &; Solar Cells, 2007, 91, 1176-1181.
11. H. Tributsc, Photochemistry and Photobiology, 1972, 16, 261-269.
12. B. O'Regan and M. Grätzel, Nature 1991, 353, 737-740.
13. C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover and M. Gratzel, Journal of the American Ceramic Society, 1997, 80, 3157-3171.
14. M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi and M. Gratzel, Journal of the American Chemical Society, 2001, 123, 1613-1624.
15. M. K. Nazeeruddin, E. Baranoff and M. Gratzel, Solar Energy, 2011, 85, 1172-1178.
16. P. Wang, S. M. Zakeeruddin, R. Humphry-Baker, J. E. Moser and M. Gratzel, Advanced Materials, 2003, 15, 2101-2104.
17. P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin and M. Gratzel, Journal of the American Chemical Society, 2005, 127, 808-809.
18. D. B. Kuang, C. Klein, S. Ito, J. E. Moser, R. Humphry-Baker, N. Evans, F. Duriaux, C. Graetzel, S. M. Zakeeruddin and M. Graetzel, Advanced Materials, 2007, 19, 1133-1137.
19. F. Gao, Y. Wang, D. Shi, J. Zhang, M. K. Wang, X. Y. Jing, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin and M. Gratzel, Journal of the American Chemical Society, 2008, 130, 10720-10728.
20. C. Y. Chen, S. J. Wu, C. G. Wu, J. G. Chen and K. C. Ho, Angewandte Chemie-International Edition, 2006, 45, 5822-5825.
21. C. Y. Chen, M. K. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Gratzel, C. G. Wu, S. M. Zakeeruddin and M. Gratzel, Acs Nano, 2009, 3, 3103-3109.
22. W. D. Zeng, Y. M. Cao, Y. Bai, Y. H. Wang, Y. S. Shi, M. Zhang, F. F. Wang, C. Y. Pan and P. Wang, Chemistry of Materials, 2010, 22, 1915-1925.
23. A. Hagfeldt and M. Gratzel, Accounts of Chemical Research, 2000, 33, 269-277.
24. M. Gratzel, Inorganic Chemistry, 2005, 44, 6841-6851.
25. P. Wang, S. M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker and M. Gratzel, Journal of Physical Chemistry B, 2003, 107, 14336-14341.
26. F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin and M. Graetzel, Journal of the American Chemical Society, 2008, 130, 10720-10728.
27. J. N. Clifford, E. Martinez-Ferrero, A. Viterisi and E. Palomares, Chemical Society Reviews, 2011, 40, 1635-1646.
28. S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Gratzel, M. K. Nazeeruddin and M. Gratzel, Thin Solid Films, 2008, 516, 4613-4619.
29. T. Bessho, S. M. Zakeeruddin, C. Y. Yeh, E. W. G. Diau and M. Gratzel, Angewandte Chemie-International Edition, 2010, 49, 6646-6649.
30. K. Sayama, H. Sugihara and H. Arakawa, Chemistry of Materials, 1998, 10, 3825-3832.
31. R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa and M. Tachiya, Journal of Physical Chemistry B, 2004, 108, 4818-4822.
32. K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara and H. Arakawa, Chemistry Letters, 2000, 316-317.
33. S. Burnside, J. E. Moser, K. Brooks, M. Gratzel and D. Cahen, Journal of Physical Chemistry B, 1999, 103, 9328-9332.
34. B. Tan, E. Toman, Y. Li and Y. Wu, Journal of the American Chemical Society, 2007, 129, 4162-4163.
35. M. Quintana, T. Edvinsson, A. Hagfeldt and G. Boschloo, Journal of Physical Chemistry C, 2007, 111, 1035-1041.
36. Q. F. Zhang, C. S. Dandeneau, X. Y. Zhou and G. Z. Cao, Advanced Materials, 2009, 21, 4087-4108.
37. Y. F. Gao, M. Nagai, T. C. Chang and J. J. Shyue, Crystal Growth &; Design, 2007, 7, 2467-2471.
38. A. B. F. Martinson, J. W. Elam, J. T. Hupp and M. J. Pellin, Nano Letters, 2007, 7, 2183-2187.
39. M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. D. Yang, Nature Materials, 2005, 4, 455-459.
40. C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong and J. X. Wang, Applied Physics Letters, 2007, 90, 263501.
41. T. P. Chou, Q. F. Zhang, G. E. Fryxell and G. Z. Cao, Advanced Materials, 2007, 19, 2588-2592.
42. S. Ito, P. Liska, P. Comte, R. L. Charvet, P. Pechy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin and M. Gratzel, Chemical Communications, 2005, 4351-4353.
43. N. G. Park, J. van de Lagemaat and A. J. Frank, Journal of Physical Chemistry B, 2000, 104, 8989-8994.
44. Z. S. Wang, H. Kawauchi, T. Kashima and H. Arakawa, Coordination Chemistry Reviews, 2004, 248, 1381-1389.
45. I. G. Yu, Y. J. Kim, H. J. Kim, C. Lee and W. I. Lee, Journal of Materials Chemistry, 2011, 21, 532-538.
46. L. Yang, Y. Lin, J. G. Jia, X. R. Xiao, X. P. Li and X. W. Zhou, Journal of Power Sources, 2008, 182, 370-376.
47. F. J. Knorr, D. Zhang and J. L. McHale, Langmuir, 2007, 23, 8686-8690.
48. G. Oskam, B. V. Bergeron, G. J. Meyer and P. C. Searson, Journal of Physical Chemistry B, 2001, 105, 6867-6873.
49. J. Burschka, V. Brault, S. Ahmad, L. Breau, M. K. Nazeeruddin, B. Marsan, S. M. Zakeeruddin and M. Gratzel, Energy &; Environmental Science, 2012, 5, 6089-6097.
50. Y. Bai, Q. J. Yu, N. Cai, Y. H. Wang, M. Zhang and P. Wang, Chemical Communications, 2011, 47, 4376-4378.
51. G. Boschloo, L. Haggman and A. Hagfeldt, Journal of Physical Chemistry B, 2006, 110, 13144-13150.
52. T. Hoshikawa, T. Ikebe, R. Kikuchi and K. Eguchi, Electrochimica Acta, 2006, 51, 5286-5294.
53. G. Schlichthorl, S. Y. Huang, J. Sprague and A. J. Frank, Journal of Physical Chemistry B, 1997, 101, 8141-8155.
54. P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin and M. Gratzel, Applied Physics Letters, 2005, 86, 123508.
55. D. F. Watson and G. J. Meyer, Coordination Chemistry Reviews, 2004, 248, 1391-1406.
56. S. E. Koops, B. C. O'Regan, P. R. F. Barnes and J. R. Durrant, Journal of the American Chemical Society, 2009, 131, 4808-4818.
57. S. M. Feldt, E. A. Gibson, E. Gabrielsson, L. Sun, G. Boschloo and A. Hagfeldt, Journal of the American Chemical Society, 2010, 132, 16714-16724.
58. C.-H. Lee, K.-M. Lee, Y.-L. Tung and J.-M. Wu, Journal of the Electrochemical Society, 2012, 159, B430-B433.
59. H. Nusbaumer, J. E. Moser, S. M. Zakeeruddin, M. K. Nazeeruddin and M. Gratzel, Journal of Physical Chemistry B, 2001, 105, 10461-10464.
60. A. Hauch and A. Georg, Electrochimica Acta, 2001, 46, 3457-3466.
61. E. Olsen, G. Hagen and S. E. Lindquist, Solar Energy Materials &; Solar Cells, 2000, 63, 267-273.
62. A. Kay and M. Gratzel, Solar Energy Materials &; Solar Cells, 1996, 44, 99-117.
63. T. N. Murakami and M. Gratzel, Inorganica Chimica Acta, 2008, 361, 572-580.
64. Y. Saito, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, Journal of Photochemistry and Photobiology a-Chemistry, 2004, 164, 153-157.
65. M. K. Wang, A. M. Anghel, B. Marsan, N. L. C. Ha, N. Pootrakulchote, S. M. Zakeeruddin and M. Gratzel, Journal of the American Chemical Society, 2009, 131, 15976-15977.
66. D. S. Zhang, T. Yoshida and H. Minoura, Chemistry Letters, 2002, 874-875.
67. D. S. Zhang, T. Yoshida and H. Minoura, Advanced Materials, 2003, 15, 814-817.
68. T. Miyasaka, Y. Kijitori, T. N. Murakami, M. Kimura and S. Uegusa, Chemistry Letters, 2002, 1250-1251.
69. S. Uchida, M. Timiha, H. Takizawa and M. Kawaraya, Journal of Photochemistry and Photobiology a-Chemistry, 2004, 164, 93-96.
70. C. Longo, J. Freitas and M. A. De Paoli, Journal of Photochemistry and Photobiology a-Chemistry, 2003, 159, 33-39.
71. T. N. Murakami, Y. Kijitori, N. Kawashima and T. Miyasaka, Journal of Photochemistry and Photobiology a-Chemistry, 2004, 164, 187-191.
72. T. Yamaguchi, N. Tobe, D. Matsumoto and H. Arakawa, Chemical Communications, 2007, 4767-4769.
73. K.-M. Lee, W.-H. Chiu, M.-D. Lu and W.-F. Hsieh, Journal of Power Sources, 2011, 196, 8897-8903.
74. N. Papageorgiou, Coordination Chemistry Reviews, 2004, 248, 1421-1446.
75. L. Chen, W. Tan, J. Zhang, X. Zhou, X. Zhang and Y. Lin, Electrochimica Acta, 2010, 55, 3721-3726.
76. S. S. Kim, Y. C. Nah, Y. Y. Noh, J. Jo and D. Y. Kim, Electrochimica Acta, 2006, 51, 3814-3819.
77. J. Halme, M. Toivola, A. Tolvanen and P. Lund, Solar Energy Materials &; Solar Cells, 2006, 90, 872-886.
78. H. Lindstrom, A. Holmberg, E. Magnusson, S. E. Lindquist, L. Malmqvist and A. Hagfeldt, Nano Letters, 2001, 1, 97-100.
79. M. Toivola, J. Halme, K. Miettunen, K. Aitola and P. D. Lund, International Journal of Energy Research, 2009, 33, 1145-1160.
80. Y. M. Xiao, J. H. Wu, G. T. Yue, J. M. Lin, M. L. Huang and Z. Lan, Electrochimica Acta, 2011, 56, 8545-8550.
81. J.-Y. Lin, J.-H. Liao and T.-Y. Hung, Electrochemistry Communications, 2011, 13, 977-980.
82. P. Sudhagar, S. Nagarajan, Y.-G. Lee, D. Song, T. Son, W. Cho, M. Heo, K. Lee, J. Won and Y. S. Kang, Acs Applied Materials &; Interfaces, 2011, 3, 1838-1843.
83. X. M. Fang, T. L. Ma, G. Q. Guan, M. Akiyama, T. Kida and E. Abe, Journal of Electroanalytical Chemistry, 2004, 570, 257-263.
84. K. Miettunen, J. Halme, M. Toivola and P. Lund, Journal of Physical Chemistry C, 2008, 112, 4011-4017.
85. J. H. Park, Y. Jun, H. G. Yun, S. Y. Lee and M. G. Kang, Journal of the Electrochemical Society, 2008, 155, F145-F149.
86. T. L. Ma, X. M. Fang, M. Akiyama, K. Inoue, H. Noma and E. Abe, Journal of Electroanalytical Chemistry, 2004, 574, 77-83.
87. M. Toivola, F. Ahlskog and P. Lund, Solar Energy Materials &; Solar Cells, 2006, 90, 2881-2893.
88. J.-M. Kim and S.-W. Rhee, Journal of the Electrochemical Society, 2012, 159, B6-B11.
89. Y. D. Wang, M. X. Wu, X. Lin, Z. C. Shi, A. Hagfeldt and T. L. Ma, Journal of Materials Chemistry, 2012, 22, 4009-4014.
90. T. W. Hamann, O. K. Farha and J. T. Hupp, Journal of Physical Chemistry C, 2008, 112, 19756-19764.
91. T. S. Kang, S. H. Moon and K. J. Kim, Journal of the Electrochemical Society, 2002, 149, E155-E158.
92. B. Yoo, K. Kim, D. K. Lee, M. J. Ko, H. Lee, Y. H. Kim, W. M. Kim and N. G. Park, Journal of Materials Chemistry, 2010, 20, 4392-4398.
93. B. Yoo, K. J. Kim, S. Y. Bang, M. J. Ko, K. Kim and N. G. Park, Journal of Electroanalytical Chemistry, 2010, 638, 161-166.
94. P. J. Cameron and L. M. Peter, Journal of Physical Chemistry B, 2005, 109, 7392-7398.
95. A. J. Frank, N. Kopidakis and J. van de Lagemaat, Coordination Chemistry Reviews, 2004, 248, 1165-1179.
96. C. Lin, Feng-Yu Tsai, M.-H. Lee, C.-H. Lee, T.-C. Tien, L.-P. Wangb and S.-Y. Tsaib, Journal of Materials Chemistry, 2009, 19, 2999-3003.
97. B. Bills, M. Shanmugam and M. F. Baroughi, Thin Solid Films, 2011, 519, 7803-7808.
98. J. Xia, N. Masaki, K. Jiang and S. Yanagida, Journal of Physical Chemistry B, 2006, 110, 25222-25228.
99. J. B. Xia, N. Masaki, K. J. Jiang and S. Yanagida, Journal of Physical Chemistry C, 2007, 111, 8092-8097.
100. W. W. Tan, X. Yin, X. M. Zhou, J. B. Zhang, X. R. Xiao and Y. Lin, Electrochimica Acta, 2009, 54, 4467-4472.
101. H. G. Yun, B. S. Bae and M. G. Kang, Advanced Energy Materials, 2011, 1, 337-342.
102. J. J. Wu, G. R. Chen, C. C. Lu, W. T. Wu and J. S. Chen, Nanotechnology, 2008, 19, 105702.
103. A. Reynal and E. Palomares, Energy &; Environmental Science, 2009, 2, 1078-1081.
104. S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, Journal of Physical Chemistry B, 2005, 109, 3480-3487.
105. Y. Tachibana, K. Hara, K. Sayama and H. Arakawa, Chemistry of Materials, 2002, 14, 2527-2535.
106. W.-G. Yang, F.-R. Wan, Q.-W. Chen, J.-J. Li and D.-S. Xu, Journal of Materials Chemistry, 2010, 20, 2870-2876.
107. S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat and A. J. Frank, Journal of the American Chemical Society, 2003, 125, 6306-6310.
108. M. I. Asghar, K. Miettunen, J. Halme, P. Vahermaa, M. Toivola, K. Aitola and P. Lund, Energy &; Environmental Science, 2010, 3, 418-426.
109. R. Harikisun and H. Desilvestro, Solar Energy, 2011, 85, 1179-1188.
110. D. B. Kuang, C. Klein, Z. P. Zhang, S. Ito, J. E. Moser, S. M. Zakeeruddin and M. Gratzel, Small, 2007, 3, 2094-2102.
111. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi and M. Gratzel, Nature Materials, 2003, 2, 402-407.
112. H. G. Agrell, J. Lindgren and A. Hagfeldt, Solar Energy, 2003, 75, 169-180.
113. E. Figgemeier and A. Hagfeldt, International Journal of Photoenergy, 2004, 6, 127-140.
114. H. T. Nguyen, H. M. Ta and T. Lund, Solar Energy Materials &; Solar Cells, 2007, 91, 1934-1942.
115. A. R. Andersen, J. Halme, T. Lund, M. I. Asghar, P. T. Nguyen, K. Miettunen, E. Kemppainen and O. Albrektsen, Journal of Physical Chemistry C, 2011, 115, 15598-15606.
116. N. Kato, Y. Takeda, K. Higuchi, A. Takeichi, E. Sudo, H. Tanaka, T. Motohiro, T. Sano and T. Toyoda, Solar Energy Materials &; Solar Cells, 2009, 93, 893-897.
117. H. Matsui, K. Okada, T. Kitamura and N. Tanabe, Solar Energy Materials &; Solar Cells, 2009, 93, 1110-1115.
118. C. A. Gueymard, D. Myers and K. Emery, Solar Energy, 2002, 73, 443-467.
119. N. Koide, Y. Chiba and L. Y. Han, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes &; Review Papers, 2005, 44, 4176-4181.
120. N. Koide and L. Y. Han, Review of Scientific Instruments, 2004, 75, 2828-2831.
121. F. Sauvage, J. D. Decoppet, M. Zhang, S. M. Zakeeruddin, P. Comte, M. Nazeeruddin, P. Wang and M. Gratzel, Journal of the American Chemical Society, 2011, 133, 9304-9310.
122. M. Gratzel, Accounts of Chemical Research, 2009, 42, 1788-1798.
123. X. Z. Guo, Y. H. Luo, Y. D. Zhang, X. C. Huang, D. M. Li and Q. B. Meng, Review of Scientific Instruments, 2010, 81, 103106.
124. J. Bisquert, Journal of Physical Chemistry B, 2002, 106, 325-333.
125. M. Adachi, M. Sakamoto, J. T. Jiu, Y. Ogata and S. Isoda, Journal of Physical Chemistry B, 2006, 110, 13872-13880.
126. K. P. Wang and H. S. Teng, Physical Chemistry Chemical Physics, 2009, 11, 9489-9496.
127. Q. Wang, Z. Zhang, S. M. Zakeeruddin and M. Gratzel, Journal of Physical Chemistry C, 2008, 112, 7084-7092.
128. Q. Wang, S. Ito, M. Gratzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Bessho and H. Imai, Journal of Physical Chemistry B, 2006, 110, 25210-25221.
129. S. Mikoshiba, S. Murai, H. Sumino, T. Kado, D. Kosugi and S. Hayase, Current Applied Physics, 2005, 5, 152-158.
130. H.-L. Lu, T. F. R. Shen, S.-T. Huang, Y.-L. Tung and T. C. K. Yang, Solar Energy Materials &; Solar Cells, 2011, 95, 1624-1629.
131. C. Zhang, J. Dai, Z. Huo, X. Pan, L. Hu, F. Kong, Y. Huang, Y. Sui, X. Fang, K. Wang and S. Dai, Electrochimica Acta, 2008, 53, 5503-5508.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊