|
1. R. Chandra, R. Rustgi, Biodegradable polymers, Prog Polym Sci, 23, 1273-1335 (1998). 2. R. A. Gross, B. Kalra, Biodegradable polymers for the environment, Science, 297, 803-807 (2002). 3. E. Takiyama, N. Harigai, T. Hokari, Production of aliphatic polyester, JP Patent H5-70566 (1993). 4. E. Takiyama, S. Seki, Production of aliphatic polyester, JP Patent H5-70572 (1993). 5. E. Takiyama, T. Fujimaki, S. Seki, T. Hokari, Y. Hatano, Method for manufacturing biodegradable high molecular aliphatic polyester US Patent 5310782 (1994). 6. E. Takiyama, Y. Hatano, T. Fujimaki, S. Seki, T. Hokari, T. Hosogane, N. Harigai, Method of producing a high molecular weight aliphatic polyester and film thereof, US Patent 5436056 (1995). 7. T. Fujimaki, Processability and properties of aliphatic polyesters, 'BIONOLLE', synthesized by polycondensation reaction, Polym. Degrad. Stab., 59, 209-214 (1998). 8. Y. Doi, H. Abe, Structural effects on biodegradation of aliphatic polyesters, Macromolecular Symposia, 118, 725-731 (1997). 9. J. Aburto, I. Alric, S. Thiebaud, E. Borredon, D. Bikiaris, J. Prinos, C. Panayiotou, Synthesis, characterization, and biodegradability of fatty-acid esters of amylose and starch, J. Appl. Polym. Sci., 74, 1440-1451 (1999). 10. R. W. Lenz, R. H. Marchessault, Bacterial polyesters: Biosynthesis, biodegradable plastics and biotechnology, Biomacromolecules, 6, 1-8 (2005). 11. R. D. Fields, F. Rodriguez, R. K. Finn, Microbial degradation of polysters- polycaprolactone degraded by P. Pullulans, J. Appl. Polym. Sci., 18, 3571-3579 (1974). 12. G. Montaudo, P. Rizzarelli, Synthesis and enzymatic degradation of aliphatic copolyesters, Polym. Degrad. Stab., 70, 305-314 (2000). 13. P. Rizzarelli, G. Impallomeni, G. Montaudo, Evidence for selective hydrolysis of aliphatic copolyesters induced by lipase catalysis, Biomacromolecules, 5, 433-444 (2004). 14. G. Seretoudi, D. Bikiaris, C. Panayiotou, Synthesis, characterization and biodegradability of poly(ethylene succinate)/poly(epsilon- caprolactone) block copolymers, Polymer, 43, 5405-5415 (2002). 15. M. Nagata, T. Machida, W. Sakai, N. Tsutsumi, Synthesis, characterization, and enzymatic degradation studies on novel network aliphatic polyesters, Macromolecules, 31, 6450-6454 (1998). 16. Y. Kumagai, Y. Kanesawa, Y. Doi, Enzymatic degradation of microbial poly(3-hydroxybutyrate) films, Macromolecular Chemistry and Physics, 193, 53-57 (1992). 17. Y. Tezuka, N. Ishii, K. Kasuya, H. Mitomo, Degradation of poly(ethylene succinate) by mesophilic bacteria, Polym. Degrad. Stab., 84, 115-121 (2004). 18. P. Rizzarelli, C. Puglisi, G. Montaudo, Soil burial and enzymatic degradation in solution of aliphatic co-polyesters, Polym. Degrad. Stab., 85, 855-863 (2004). 19. M. Hakkarainen, A. C. Albertsson, S. Karlsson, Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degradation of homo- and copolymers of PLA and PGA, Polym. Degrad. Stab., 52, 283-291 (1996). 20. C. K. Liu, The irradiation effect and mechanical properties of polymer, National Tsing Hua University, PhD thesis (2005). 21. A. Charlesby, Effect of molecular weight on the cross-linking of siloxanes by high-energy radiation, Nature, 173, 679-680 (1954). 22. R. L. Clough, High-energy radiation and polymers: A review of commercial processes and emerging applications, Nucl. Instrum. Methods Phys. Res., 185, 8-33 (2001). 23. Z. Qiu, M. Komura, T. Ikehara, T. Nishi, Poly(butylene succinate)/poly(vinyl phenol) blends. Part 1. Miscibility and crystallization, Polymer, 44, 8111-8117 (2003). 24. Z. B. Qiu, S. Fujinami, M. Komura, K. Nakajima, T. Ikehara, T. Nishi, Miscibility and crystallization of poly(ethylene succinate)/poly(vinyl phenol) blends, Polymer, 45, 4515-4521 (2004). 25. J. Liu, B. J. Jungnickel, Crystallization kinetical and morphological peculiarities in binary crystalline/crystalline polymer blends, Journal of Polymer Science Part B-Polymer Physics, 45, 1917-1931 (2007). 26. M. Avella, E. Martuscelli, Poly (3-hydroxybutyrate)/poly (ethylene oxide) blends: phase diagram, thermal and crystallization behaviour, Polymer, 29, 1731-1737 (1988). 27. J. P. Liu, B. J. Jungnickel, Crystallization and morphology of poly(vinylidene fluoride)/poly(3-hydroxybutyrate) blends. I. Spherulitic morphology and growth by polarized microscopy, Journal of Polymer Science Part B-Polymer Physics, 41, 873-882 (2003). 28. S. Hirano, Y. Nishikawa, Y. Terada, T. Ikehara, T. Nishi, Miscibility and crystallization behavior of crystalline/crystalline polymer blends. Poly(ester carbonate)/poly(L-lactic acid), Polym. J., 34, 85-88 (2002). 29. T. Ikehara, Y. Nishikawa, T. Nishi, Evidence for the formation of interpenetrated spherulites in poly(butylene succinate-co-butylene carbonate)/poly(L-lactic acid) blends investigated by atomic force microscopy, Polymer, 44, 6657-6661 (2003). 30. E. Blumm, A. J. Owen, Miscibility, crystallization and melting of poly(3-hydroxybutyrate)/ poly(l-lactide) blends, Polymer, 36, 4077-4081 (1995). 31. J. Lu, Z. Qiu, W. Yang, Crystallization Kinetics and Hydrophilicity Improvement of Biodegradable Poly(butylene succinate) in its Miscible Blends with Poly(ethylene oxide), Macromolecular Materials and Engineering, 293, 930-938 (2008). 32. H. A. Al-Salah, Crystallization and morphology of poly(ethylene succinate) and poly(beta-hydroxybutyrate) blends, Polym. Bull., 41, 593-600 (1998). 33. H. L. Chen, S. F. Wang, Crystallization induced microstructure of polymer blends consisting of two crystalline constituents, Polymer, 41, 5157-5164 (2000). 34. Z. B. Qiu, T. Ikehara, T. Nishi, Unique morphology of poly(ethylene succinate)/poly(ethylene oxide) blends, Macromolecules, 35, 8251-8254 (2002). 35. C. S. Fuller, C. L. Erickson, An X-ray study of some linear polyesters, J. Am. Chem. Soc., 59, 344-351 (1937). 36. A. S. Ueda, Y. Chatani, H. Tadokoro, Structural studies of polyesters 4. molecular and crystal structures of poly(ethylene succinate) and poly(ethylene oxalate), Polym. J., 2, 387-397 (1971). 37. T. Iwata, Y. Doi, K. Isono, Y. Yoshida, Morphology and enzymatic degradation of solution-grown single crystals of poly(ethylene succinate), Macromolecules, 34, 7343-7348 (2001). 38. Y. Ichikawa, K. Noguchi, K. Okuyama, J. Washiyama, Crystal transition mechanisms in poly(ethylene succinate), Polymer, 42, 3703-3708 (2001). 39. Z. H. Gan, H. Abe, Y. Doi, Biodegradable poly(ethylene succinate) (PESU). 1. Crystal growth kinetics and morphology, Biomacromolecules, 1, 704-712 (2000). 40. I. A. Alraheil, A. M. A. Qudah, On the triple melting behaviour of poly (ethylene succinate), Polym. Int., 37, 249-254 (1995). 41. Z. B. Qiu, T. Ikehara, T. Nishi, Crystallization behaviour of biodegradable poly(ethylene succinate) from the amorphous state, Polymer, 44, 5429-5437 (2003). 42. Z. B. Qiu, M. Komura, T. Ikehara, T. Nishi, DNC and TMDSC study of melting behaviour of poly(butylene succinate) and poly(ethylene succinate), Polymer, 44, 7781-7785 (2003). 43. S. Umemoto, N. Okui, Master curve of crystal growth rate and its corresponding state in polymeric materials, Polymer, 43, 1423-1427 (2002). 44. M. Avrami, Kinetics of phase change I - General theory, J. Chem. Phys., 7, 1103-1112 (1939). 45. M. Avrami, Granulation, Phase Change, and Microstructure - Kinetics of Phase Change. III, J. Chem. Phys., 9, 177-184 (1941). 46. M. Avrami, Kinetics of phase change II - transformation-time relations for random distribution of nuclei, J. Chem. Phys., 8, 212-224 (1940). 47. G. Bodor, Structural investigation of polymers, Eillis Horwood Pub, Chichester, England, Chap. 6 (1991). 48. Lauritzen Ji, J. D. Hoffman, Extension of theory of growth of chain- folded polymer crystals to large undercoolings, J. Appl. Phys., 44, 4340-4352 (1973). 49. J. D. Hoffman, G. T. Davis, J. I. Lauritzen Jr., In treatise on solid state chemistry, Crystalline and noncrystalline solids, Plenum, New York, Chap. 7 (1976). 50. Lauritzen Ji, Effect of a finite substrate length upon polymer crystal lamellar growth rate, J. Appl. Phys., 44, 4353-4359 (1973). 51. J. D. Hoffman, Role of reptation in the rate of crystallization of polyethylene fractions from the melt, Polymer, 23, 656-670 (1982). 52. J. D. Hoffman, Regime III crystallization in melt-crystallized polymers: the variable cluster model of chain folding, Polymer, 24, 3-26 (1983). 53. J. D. Hoffman, R. L. Miller, Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: Theory and experiment, Polymer, 38, 3151-3212 (1997). 54. P. J. Lemstra, G. Challa, T. Kooistra, Melting behavior of isotactic polystyrene, Journal of Polymer Science Part A-2: Polymer Physics, 10, 823-833 (1972). 55. C. X. Zhou, S. B. Clough, Multiple melting endotherms of poly (ethylene terephthalate), Polym. Eng. Sci., 28, 65-68 (1988). 56. S. B. Lin, J. L. Koenig, The transitions and melting behavior of thermally crystallized poly (ethylene terephthalate) and their correlations with FTIR and density measurements, Journal of Polymer Science-Polymer Symposia, 121-135 (1984). 57. D. C. Bassett, R. H. Olley, I. A. M. Alraheil, On crystallization phenomena in PEEK, Polymer, 29, 1745-1754 (1988). 58. J. M. Lu, Z. B. Qiu, W. T. Yang, Crystallization Kinetics and Hydrophilicity Improvement of Biodegradable Poly(butylene succinate) in its Miscible Blends with Poly(ethylene oxide), Macromolecular Materials and Engineering, 293, 930-938 (2008). 59. J. M. Lu, Z. B. Qiu, W. T. Yang, Fully biodegradable blends of poly(L-lactide) and poly(ethylene succinate): Miscibility, crystallization, and mechanical properties, Polymer, 48, 4196-4204 (2007).
|