跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/12 20:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周昱呈
研究生(外文):Chou, Yu-Cheng
論文名稱:加馬輻射對聚丁二酸二乙酯等溫結晶行為影響之研究
論文名稱(外文):The Effect of Gamma-ray Irradiation on Isothermal Crystallization of Poly(Ethylene Succinate)
指導教授:李三保李三保引用關係
指導教授(外文):Lee, Sanboh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:107
中文關鍵詞:等溫結晶加馬射線聚酯
外文關鍵詞:isothermal crystallizationγ-raysuccinate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討受不同劑量的加馬輻射對於聚丁二酸二乙酯等溫結晶行為的影響,利用示差掃描熱卡計(DSC)和偏光顯微鏡(POM)觀察在不同劑量的加馬輻射影響下的熱性質、整體等溫結晶速率、球晶成長速率以及形貌。
聚丁二酸二乙酯的玻璃轉換溫度為-19.9℃;隨著輻射劑量的增加玻璃轉換溫度也隨之上升但是熔點降低。從DSC數據可得知整體結晶速率常數k隨著結晶溫度的下降(從70℃到35℃)而上升但是到30℃又下降。在相同結晶溫度下,隨著輻射劑量的增加達到完整結晶的時間也越久。聚丁二酸二乙酯在等溫結晶之後,經由升溫過程可觀察到多重熔融峰,一般認為是由於升溫過程中的熔融再結晶所造成,並求得平衡熔點會隨著輻射劑量的增加而下降。聚丁二酸二乙酯的球晶成長速率在50℃左右為最大值;並隨著輻射劑量的增加成長速率有顯著的下降,推測其中原因可能是因為加馬輻射對於高分子產生交聯使得分子鏈段移動性下降。將球晶成長速率利用Lauritzen-Hoffman成核理論加以分析,可得到聚丁二酸二乙酯由Regime II轉移到Regime III的溫度為72.5℃且活化能為2.507 kJ/ mole;隨著輻射劑量的增加Regime轉移溫度隨之下降但活化能反之上升。利用相同方式分析由DSC所得到的t1/2-1可得知活化能一樣會隨著輻射劑量的上升而增加。

The isothermal crystallization of semicrystalline polymers and its blends have been studied for a long time, but there is less attention mention about the effect of gamma-ray irradiation on isothermal crystallization of semicrystalline polymers. In this research, the thermal properties, overall isothermal crystallization, spherulitic morphology and growth rate of non-irradiated and irradiated PESU were investigated by DSC and POM measurement and analyzed by Avrami equation and Lauritzen-Hoffman nucleation theory.
The glass transition temperature of non-irradiated PESU is -19.9℃. The values of Tg increases with increasing of gamma-ray dose. The multiple melting behavior of PESU was observed after isothermal crystallization during DSC heating scan and the equilibrium melting temperature Tm0 was determined. The values of Tm0 decrease with increasing of gamma-ray dose. The overall isothermal crystallization rates of PESU increase with decreasing crystallization temperature from 70 to 35℃ but decrease at 30℃ as the same trend as the half time of crystallization t1/2-1 regardless of gamma-ray irradiation. The crystallization rate k of irradiated PESU is lower than that of non-irradiated PESU at the same crystallization temperature. Both non-irradiated and irradiated PESU show a maximum value of the growth rate and non-irradiated PESU being higher than that of irradiated at the same crystallization temperature. On the basis of LH theory, there is one transition between regime III and regime II was found at around 72.5℃ and the activation energy is 2.507 kJ/ mole. With the increasing of gamma-ray dose, the regime transition temperature decreases but activation energy increases. The values of t1/2-1 from DSC were used the same method to determined activation energy. The activation energy also increases with increasing of gamma-ray dose.

Acknowledgement I
摘要 II
Abstract III
Content V
Figure Captions VII
List of Tables XIII
Chapter 1 Introduction 1
1.1 Background 1
1.2 Radiation 3
1.3 Motivation 4
Chapter 2 Literature and Theory Review 6
2.1 Literature review 6
2.2 Theory review 9
2.2.1 Avrami equation 9
2.2.2 Lauritzen-Hoffman nucleation theory 12
Chapter 3 Experimental 20
3.1 Materials 20
3.2 Samples Preparation 20
3.3 Gamma-ray irradiation 20
3.4 Instruments 21
3.4.1 Differential scanning calorimetry (DSC) 21
3.4.2 Polarized optical microscope (POM) 22
3.5 Measurement 22
3.5.1 Measurements of glass transition temperature (Tg) and melting temperature (Tm) 22
3.5.2 Crystallization kinetics and melting behavior 23
3.5.3 Spherulitic morphology and measurement of growth rate…. 24
Chapter 4 Results and Discussion 28
4.1 Measurement of Tg and Tm 28
4.2 Overall isothermal crystallization kinetics 29
4.3 Multiple melting behavior and equilibrium melting temperature 32
4.4 Spherulitic growth rate and regime analysis 35
Chapter 5 Conclusions 95
Reference 98

1. R. Chandra, R. Rustgi, Biodegradable polymers, Prog Polym Sci, 23, 1273-1335 (1998).
2. R. A. Gross, B. Kalra, Biodegradable polymers for the environment, Science, 297, 803-807 (2002).
3. E. Takiyama, N. Harigai, T. Hokari, Production of aliphatic polyester, JP Patent H5-70566 (1993).
4. E. Takiyama, S. Seki, Production of aliphatic polyester, JP Patent H5-70572 (1993).
5. E. Takiyama, T. Fujimaki, S. Seki, T. Hokari, Y. Hatano, Method for manufacturing biodegradable high molecular aliphatic polyester US Patent 5310782 (1994).
6. E. Takiyama, Y. Hatano, T. Fujimaki, S. Seki, T. Hokari, T. Hosogane, N. Harigai, Method of producing a high molecular weight aliphatic polyester and film thereof, US Patent 5436056 (1995).
7. T. Fujimaki, Processability and properties of aliphatic polyesters, 'BIONOLLE', synthesized by polycondensation reaction, Polym. Degrad. Stab., 59, 209-214 (1998).
8. Y. Doi, H. Abe, Structural effects on biodegradation of aliphatic polyesters, Macromolecular Symposia, 118, 725-731 (1997).
9. J. Aburto, I. Alric, S. Thiebaud, E. Borredon, D. Bikiaris, J. Prinos, C. Panayiotou, Synthesis, characterization, and biodegradability of fatty-acid esters of amylose and starch, J. Appl. Polym. Sci., 74, 1440-1451 (1999).
10. R. W. Lenz, R. H. Marchessault, Bacterial polyesters: Biosynthesis, biodegradable plastics and biotechnology, Biomacromolecules, 6, 1-8 (2005).
11. R. D. Fields, F. Rodriguez, R. K. Finn, Microbial degradation of polysters- polycaprolactone degraded by P. Pullulans, J. Appl. Polym. Sci., 18, 3571-3579 (1974).
12. G. Montaudo, P. Rizzarelli, Synthesis and enzymatic degradation of aliphatic copolyesters, Polym. Degrad. Stab., 70, 305-314 (2000).
13. P. Rizzarelli, G. Impallomeni, G. Montaudo, Evidence for selective hydrolysis of aliphatic copolyesters induced by lipase catalysis, Biomacromolecules, 5, 433-444 (2004).
14. G. Seretoudi, D. Bikiaris, C. Panayiotou, Synthesis, characterization and biodegradability of poly(ethylene succinate)/poly(epsilon- caprolactone) block copolymers, Polymer, 43, 5405-5415 (2002).
15. M. Nagata, T. Machida, W. Sakai, N. Tsutsumi, Synthesis, characterization, and enzymatic degradation studies on novel network aliphatic polyesters, Macromolecules, 31, 6450-6454 (1998).
16. Y. Kumagai, Y. Kanesawa, Y. Doi, Enzymatic degradation of microbial poly(3-hydroxybutyrate) films, Macromolecular Chemistry and Physics, 193, 53-57 (1992).
17. Y. Tezuka, N. Ishii, K. Kasuya, H. Mitomo, Degradation of poly(ethylene succinate) by mesophilic bacteria, Polym. Degrad. Stab., 84, 115-121 (2004).
18. P. Rizzarelli, C. Puglisi, G. Montaudo, Soil burial and enzymatic degradation in solution of aliphatic co-polyesters, Polym. Degrad. Stab., 85, 855-863 (2004).
19. M. Hakkarainen, A. C. Albertsson, S. Karlsson, Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degradation of homo- and copolymers of PLA and PGA, Polym. Degrad. Stab., 52, 283-291 (1996).
20. C. K. Liu, The irradiation effect and mechanical properties of polymer, National Tsing Hua University, PhD thesis (2005).
21. A. Charlesby, Effect of molecular weight on the cross-linking of siloxanes by high-energy radiation, Nature, 173, 679-680 (1954).
22. R. L. Clough, High-energy radiation and polymers: A review of commercial processes and emerging applications, Nucl. Instrum. Methods Phys. Res., 185, 8-33 (2001).
23. Z. Qiu, M. Komura, T. Ikehara, T. Nishi, Poly(butylene succinate)/poly(vinyl phenol) blends. Part 1. Miscibility and crystallization, Polymer, 44, 8111-8117 (2003).
24. Z. B. Qiu, S. Fujinami, M. Komura, K. Nakajima, T. Ikehara, T. Nishi, Miscibility and crystallization of poly(ethylene succinate)/poly(vinyl phenol) blends, Polymer, 45, 4515-4521 (2004).
25. J. Liu, B. J. Jungnickel, Crystallization kinetical and morphological peculiarities in binary crystalline/crystalline polymer blends, Journal of Polymer Science Part B-Polymer Physics, 45, 1917-1931 (2007).
26. M. Avella, E. Martuscelli, Poly (3-hydroxybutyrate)/poly (ethylene oxide) blends: phase diagram, thermal and crystallization behaviour, Polymer, 29, 1731-1737 (1988).
27. J. P. Liu, B. J. Jungnickel, Crystallization and morphology of poly(vinylidene fluoride)/poly(3-hydroxybutyrate) blends. I. Spherulitic morphology and growth by polarized microscopy, Journal of Polymer Science Part B-Polymer Physics, 41, 873-882 (2003).
28. S. Hirano, Y. Nishikawa, Y. Terada, T. Ikehara, T. Nishi, Miscibility and crystallization behavior of crystalline/crystalline polymer blends. Poly(ester carbonate)/poly(L-lactic acid), Polym. J., 34, 85-88 (2002).
29. T. Ikehara, Y. Nishikawa, T. Nishi, Evidence for the formation of interpenetrated spherulites in poly(butylene succinate-co-butylene carbonate)/poly(L-lactic acid) blends investigated by atomic force microscopy, Polymer, 44, 6657-6661 (2003).
30. E. Blumm, A. J. Owen, Miscibility, crystallization and melting of poly(3-hydroxybutyrate)/ poly(l-lactide) blends, Polymer, 36, 4077-4081 (1995).
31. J. Lu, Z. Qiu, W. Yang, Crystallization Kinetics and Hydrophilicity Improvement of Biodegradable Poly(butylene succinate) in its Miscible Blends with Poly(ethylene oxide), Macromolecular Materials and Engineering, 293, 930-938 (2008).
32. H. A. Al-Salah, Crystallization and morphology of poly(ethylene succinate) and poly(beta-hydroxybutyrate) blends, Polym. Bull., 41, 593-600 (1998).
33. H. L. Chen, S. F. Wang, Crystallization induced microstructure of polymer blends consisting of two crystalline constituents, Polymer, 41, 5157-5164 (2000).
34. Z. B. Qiu, T. Ikehara, T. Nishi, Unique morphology of poly(ethylene succinate)/poly(ethylene oxide) blends, Macromolecules, 35, 8251-8254 (2002).
35. C. S. Fuller, C. L. Erickson, An X-ray study of some linear polyesters, J. Am. Chem. Soc., 59, 344-351 (1937).
36. A. S. Ueda, Y. Chatani, H. Tadokoro, Structural studies of polyesters 4. molecular and crystal structures of poly(ethylene succinate) and poly(ethylene oxalate), Polym. J., 2, 387-397 (1971).
37. T. Iwata, Y. Doi, K. Isono, Y. Yoshida, Morphology and enzymatic degradation of solution-grown single crystals of poly(ethylene succinate), Macromolecules, 34, 7343-7348 (2001).
38. Y. Ichikawa, K. Noguchi, K. Okuyama, J. Washiyama, Crystal transition mechanisms in poly(ethylene succinate), Polymer, 42, 3703-3708 (2001).
39. Z. H. Gan, H. Abe, Y. Doi, Biodegradable poly(ethylene succinate) (PESU). 1. Crystal growth kinetics and morphology, Biomacromolecules, 1, 704-712 (2000).
40. I. A. Alraheil, A. M. A. Qudah, On the triple melting behaviour of poly (ethylene succinate), Polym. Int., 37, 249-254 (1995).
41. Z. B. Qiu, T. Ikehara, T. Nishi, Crystallization behaviour of biodegradable poly(ethylene succinate) from the amorphous state, Polymer, 44, 5429-5437 (2003).
42. Z. B. Qiu, M. Komura, T. Ikehara, T. Nishi, DNC and TMDSC study of melting behaviour of poly(butylene succinate) and poly(ethylene succinate), Polymer, 44, 7781-7785 (2003).
43. S. Umemoto, N. Okui, Master curve of crystal growth rate and its corresponding state in polymeric materials, Polymer, 43, 1423-1427 (2002).
44. M. Avrami, Kinetics of phase change I - General theory, J. Chem. Phys., 7, 1103-1112 (1939).
45. M. Avrami, Granulation, Phase Change, and Microstructure - Kinetics of Phase Change. III, J. Chem. Phys., 9, 177-184 (1941).
46. M. Avrami, Kinetics of phase change II - transformation-time relations for random distribution of nuclei, J. Chem. Phys., 8, 212-224 (1940).
47. G. Bodor, Structural investigation of polymers, Eillis Horwood Pub, Chichester, England, Chap. 6 (1991).
48. Lauritzen Ji, J. D. Hoffman, Extension of theory of growth of chain- folded polymer crystals to large undercoolings, J. Appl. Phys., 44, 4340-4352 (1973).
49. J. D. Hoffman, G. T. Davis, J. I. Lauritzen Jr., In treatise on solid state chemistry, Crystalline and noncrystalline solids, Plenum, New York, Chap. 7 (1976).
50. Lauritzen Ji, Effect of a finite substrate length upon polymer crystal lamellar growth rate, J. Appl. Phys., 44, 4353-4359 (1973).
51. J. D. Hoffman, Role of reptation in the rate of crystallization of polyethylene fractions from the melt, Polymer, 23, 656-670 (1982).
52. J. D. Hoffman, Regime III crystallization in melt-crystallized polymers: the variable cluster model of chain folding, Polymer, 24, 3-26 (1983).
53. J. D. Hoffman, R. L. Miller, Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: Theory and experiment, Polymer, 38, 3151-3212 (1997).
54. P. J. Lemstra, G. Challa, T. Kooistra, Melting behavior of isotactic polystyrene, Journal of Polymer Science Part A-2: Polymer Physics, 10, 823-833 (1972).
55. C. X. Zhou, S. B. Clough, Multiple melting endotherms of poly (ethylene terephthalate), Polym. Eng. Sci., 28, 65-68 (1988).
56. S. B. Lin, J. L. Koenig, The transitions and melting behavior of thermally crystallized poly (ethylene terephthalate) and their correlations with FTIR and density measurements, Journal of Polymer Science-Polymer Symposia, 121-135 (1984).
57. D. C. Bassett, R. H. Olley, I. A. M. Alraheil, On crystallization phenomena in PEEK, Polymer, 29, 1745-1754 (1988).
58. J. M. Lu, Z. B. Qiu, W. T. Yang, Crystallization Kinetics and Hydrophilicity Improvement of Biodegradable Poly(butylene succinate) in its Miscible Blends with Poly(ethylene oxide), Macromolecular Materials and Engineering, 293, 930-938 (2008).
59. J. M. Lu, Z. B. Qiu, W. T. Yang, Fully biodegradable blends of poly(L-lactide) and poly(ethylene succinate): Miscibility, crystallization, and mechanical properties, Polymer, 48, 4196-4204 (2007).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top