跳到主要內容

臺灣博碩士論文加值系統

(3.235.174.99) 您好!臺灣時間:2021/07/24 20:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林容丞
研究生(外文):Cheng, Lin Jung
論文名稱:微波材料處理與材料特性量測
論文名稱(外文):Microwave Materials Processing and Property Measurement
指導教授:張存續
指導教授(外文):Hsu, Chang Tsun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:69
中文關鍵詞:微波材料處理材料特性量測
外文關鍵詞:microwave materials processingmicrowave materials property measurement
相關次數:
  • 被引用被引用:1
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
由於近年研究發現微波加熱較傳統加熱有優勢,而材料的特性是決定微波加熱情況的關鍵,所以本論文我們建構了一個可以進行材料處理,以及量測材料特性的實驗系統,最高可以將SiC加熱到670℃。但因為常溫的材料特性是熟知的,而材料特性隨溫度的變化則不清楚,所以我們用了兩種腔體微擾法來量測材料SiC在不同溫度時的介電常數。用傳統的腔體微擾法量測,其優點是使用上較為方便,但缺點是適用性不廣泛,其要求材料的體積要遠小於腔體的體積,並且空腔的電場分布要相近於腔體內有材料的情況。所以我們提出另一個腔體微擾法,其適用的較為廣泛,沒有傳統的腔體微擾法的缺點,所以可以得到比較準確的數值。我們也做了實驗,運用兩種理論計算出不同溫度的SiC的介電常數,並進行比較,發現介電常數的實部結果差不多,但是介電常數的虛部則有顯著的差異,我們提出的方法有校正的效果。
第一章 簡介 1
1.1 概述 1
1.1.1 前言 1
1.1.2 材料的介電性質 3
1.1.3 品質因子Q 5
1.1.3.1 Q值的定義 5
1.1.3.2 實驗上Q值的量測 7
1.2 研究動機 9
第二章 理論計算 11
2.1 腔體微擾法 (一) 11
2.1.1 簡介 11
2.1.2 複數角頻率與實數頻率及品質因子之間的關係 11
2.1.3 腔體微擾法公式推導 12
2.1.4 介電常數計算步驟 14
2.2 腔體微擾法 (二) 14
2.2.1 腔體微擾法公式推導 14
2.2.2 介電常數計算步驟 20
第三章 材料特性介紹 22
3.1 碳化矽簡介 22
3.2 碳化矽的發展與應用 25
iv
第四章 實驗儀器與流程 29
4.1微波共振腔介紹 29
4.1.1 共振腔的設計 29
4.1.2 共振腔的熱模擬 31
4.2 實驗裝置介紹 35
第五章 實驗過程及結果 40
5.1 實驗過程 40
5.2 實驗結果 40
第六章 討論與結論 48
6.1 討論 48
6.2 結論 49
參考資料 50
附錄 54
分佈式微波電漿源技術研究 54
[1] Bratislav Milovanovic, Sladjana Ivkovic, Visa Tasic, “A simple method for permittivity measurement using microwave resonant cavity”, Microwaves and Radar, 1998. MIKON '98., 12th International Conference, vol.3, pp. 705 - 709 ,May 1998
[2] Standard Test Method D-2520-81, “Complex permittivity of solid electrical insulating materials at microwave frequencies and temperatures to 1650C,” Amer. Soc for Testing and Materials, Philadelphia. PA
[3] Andrzej W. Kraszewski, Stuart O. Nelson, “Observation on Resonant Cavity Perturbation by Dielectric Objects,” IEEE Trans. Microwave Theory Tech., vol. 40, (1), pp. 151-155, Jan. 1992.
[4] Gholamreza Moradi, Ayaz Ghorbani, “Accurate Measurement of Dielectric Porperties of Materials,” IEEE Int. Conf. Microwave and Millimeter Wave Technology Proceedings, pp.130-133, 2002.
[5] Binshen Meng, John Booske, and Reid Cooper, “Extended Cavity Perturbation Technique to Determine the Complex Permittivity of Dielectric Materials,” IEEE Trans. Microwave Theory Tech., vol.43, pp.2633-2635, 1995.
[6] A. M. Nicolson, and G. F. Ross, “Measurement of the Intrinsic Properties of Materials by Time-Domain Techniques,” IEEE Trans. Instrum. Meas., vol. IM-19, pp.377-382, Nov. 1970.
[7] Kamal Sarabandi, and Fawwaz T. Ulaby, “Technique for Measuring the Dielectric Constant of Thin Materials,” IEEE Trans. Instrum. Meas., vol. 37, pp. 631-636, Dec. 1988.
[8] Deepak K. Ghodgaonkar, Vasundara V. Varadan, and Vijay K. Varadan, “A Free-Space Method for Measurement of Dielectric Constants and Loss Tangents at Microwave Frequencies,” IEEE Trans. Instrum. Meas., vol. 37, pp. 789-793, Dec. 1989.
[9] D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “Free-Space Measurement of Complex Permittivity and Complex Permeability of Magnetic Materials at Microwave Frequencies,” IEEE Trans. Instrum. Meas., vol. 39, pp. 387-394, Apr. 1990.
[10] James Baker-Jarvis, Eric J. Vanzura, and William A. Kissick, “Improved Technique for Determining Complex Permittivity with Transmission/Reflection Method,” IEEE Trans. Microwave Theory Tech, vol. MTT-38, pp.1096-1103, Aug. 1990.
[11] H. Huang, C. E. Free, K. E. G. Pitt, A. R. Berzins, and G. P. Shorthouse, “Relative Permittivity Measurement of Thick-Film Dielectrics at Microwave Frequencies,” Electronics Letters, vol.31, pp.1812-1814, Oct, 1995.
[12] Richard D. Holling, K. A. Jose, Anilkumar Tellakula, V. V. Varadan, and V. K. Varadan, “Microwave Characterization of Dielectric Materials from 8 to 110 GHz Using A Free-Space Setup,” Microwave and Optical Tech. Letters, vol.26, pp.100-105, July, 2000.
[13] S. Biju Kumar, U. Raveendranath, P. Mohanan, K. T. Mathew, M. Hajian, and L. P. Ligthart, “A Simple Free-Space Method for Measuring the Complex Permittivity of Single and Compound Dielectric Materials,” Microwave and Optical Tech. Letters, vol.26, pp.117-119, July, 2000.
[14] Tsenchieh Chiu, “Dielectric Constant Measurement Technique for a Dielectric Strip Using a Rectangular Waveguide,” IEEE Trans. Instrum. Meas., vol. 52, pp. 1501-1508, Oct. 2003.
[15] N. Gagnon, J. Shaker, L. Roy, A. Petosa, and P. Berini, “Low-Cost Free-Space Measurement of Dielectric Constant at Ka Band ,” IEE Proc.-Microw. Antennas Propag., vol.151, pp.271-276, June, 2004.
[16] Devendra Misra, “On the Measurement of the Complex Permittivity of Materials by an Open-Ended Coaxial Probe.” IEEE Microw. And Guided Wave Letters, vol.5, May, 1995.
[17] Ahmet Baysar, and James L. Kuester, “Dielectric Property Measurements of Materials Using the Cavity Technique,” IEEE Trans. Microwave Theory Tech., vol. MTT-40, pp.2108-2110, 1992.
[18] M. Sucher, “Dielectric Constants,” in Handbook of Microwave Measurements, M. Sucher and J. Fox, Eds., 3nd ed., vol.2, Brooklyn, N.Y.: Polytechnic Press, Chap. 9, 1963.
[19] R. F. Harrington, Time-Harmonic Electromagnetic Fields. New York: McGraw-Hill, 1961.
[20] Authur Von Hippel, Dielectric Materials and Applications. Authur Von Hippel Eds., New York: The Technology Press of M.I.T. and John Willey & Son.
[21] Edward L. Ginzton, Microwave Measurements.
[22] HFSS User’s Guide – High Frequency Structure Simulator, Electronic Design Automation Software.
[23] William D. Callister, Jr., Materials Science And Engineering An Introduction. New York: John Willey & Son.
[24] R. E. Collin, Foundations for Microwave Engineering. 2nd ed., McGraw-Hill.
[25] D. M. Pozar, Microwave Engineering. 2nd ed., John Willey & Son.
[26] J. D. Jackson, Classical Electrodynamics. 3nd ed., John Willey & Son.
[27] T. H. Chang, “微波物理與應用”講義, 清大物理系.
[28] Edward L. Ginzton, Microwave Measurements, New York: McGraw-Hill, 1975
[29] 林博文,“碳化矽及其他碳化物," 陶瓷技術手冊, 中華民國產業科技發展協進會, 761 (1994).
[30] E.Jansen, R.Ziermann, E.Obermeier, G..Krötz, Ch.Wagner, ”Measurement of the Thermal Conductivity of Thin β-SiC Films between 80 K and 600 K,”Materials Science Forum Vols. 264-268 pp 631-634,1998
[31] 盧佳卉,"高頻材料介電常數量測,"國立清華大學碩士論文,2005
[32] 徐複樺,"電磁場可控式之微波材料處理,"國立清華大學碩士論文,2009
[33] T. H. Chang, H. W. Chao, F. H. Syu, W. Y. Chiang, S. C. Fong, and T. S. Chin ,” Efficient heating with a controlled microwave field,”
Rev. Sci. Instrum. 82, 124703 (2011)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top