|
[1] Andreas Birkedal, Andrew Noble, Maxim Perelstein, and Andrew Spray. Little higgs dark matter. Phys. Rev. D, 74:035002, Aug 2006. [2] Vanda Silveira and A. Zee. Scalar phantoms. Phys.Lett., B161:136, 1985. [3] M.J.G. Veltman and F.J. Yndurain. Nucl.Phys., B325:1, 1989. Radiative corrections to w w scattering. [4] John McDonald. Gauge singlet scalars as cold dark matter. Phys.Rev., D50:3637– 3649, 1994. [5] C.P. Burgess, Maxim Pospelov, and Tonnis ter Veldhuis. The minimal model of nonbaryonic dark matter: A singlet scalar. Nucl.Phys., B619:709–728, 2001. [6] David N. Spergel and Paul J. Steinhardt. Observational evidence for self-interacting cold dark matter. Phys. Rev. Lett., 84:3760–3763, 2000. [7] Edward W. Kolb and Michael S. Turner. The early universe. Front.Phys., 69:1–547, 1990. [8] A. Djouadi, J. Kalinowski, and M. Spira. Hdecay: A program for higgs boson decays in the standard model and its supersymmetric extension. Comput.Phys.Commun., 108:56–74, 1998. [9] Greg W. Anderson and Lawrence J. Hall. Electroweak phase transition and baryo- genesis. Phys. Rev. D, 45:2685–2698, Apr 1992. [10] The ATLAS Collaboration. Combination of higgs boson searches with up to 4.9 fb-1 of pp collisions data taken at a center-of-mass energy of 7 tev with the atlas experiment at the lhc. Technical Report ATLAS-CONF-2011-163, CERN, Geneva, Dec 2011. [11] The CMS Collaboration. Combination of sm higgs searches. Technical Report CMS- PAS HIG-11-032, CERN, Geneva, Dec 2011. [12] Ofer Lahav and Andrew R Liddle. The cosmological parameters 2010. 2010. [13] J.F. Donoghue, E. Golowich, B.R. Holstein, J.F. Donoghue, E. Golowich, and B.R. Holstein. Dynamics of the standard model, volume 2. Cambridge Univ Pr, 1994. [14] Z. Ahmed et al. Results from a low-energy analysis of the cdms ii germanium data. Phys.Rev.Lett., 106:131302, 2011. [15] C.E. Aalseth et al. Results from a search for light-mass dark matter with a p-type point contact germanium detector. Phys.Rev.Lett., 106:131301, 2011. [16] E. Armengaud et al. Final results of the edelweiss-ii wimp search using a 4-kg array of cryogenic germanium detectors with interleaved electrodes. Phys.Lett., B702:329– 335, 2011. [17] Z. Ahmed et al. Combined limits on wimps from the cdms and edelweiss experiments. Phys.Rev., D84:011102, 2011. [18] J. Angle et al. A search for light dark matter in xenon10 data. Phys.Rev.Lett., 107:051301, 2011. [19] D.Yu. Akimov, H.M. Araujo, E.J. Barnes, V.A. Belov, A. Bewick, et al. Wimp- nucleon cross-section results from the second science run of zeplin-iii. Arxiv preprint arXiv:1110.4769, 2011. [20] Paul L. Brink et al. Beyond the cdms-ii dark matter search: Supercdms. eConf, C041213:2529, 2004. [21] Elena Aprile. The xenon100 dark matter experiment at lngs: Status and sensitivity. J.Phys.Conf.Ser., 203:012005, 2010. [22] G. Steigman, C.L. Sarazin, H. Quintana, and J. Faulkner. Dynamical interactions and astrophysical effects of stable heavy neutrinos. The Astronomical Journal, 83:1050– 1061, 1978. [23] Alon E. Faraggi, Keith A. Olive, and Maxim Pospelov. Probing the desert with ultraenergetic neutrinos from the sun. Astropart.Phys., 13:31–43, 2000. [24] Mark Srednicki, Keith A. Olive, and Joseph Silk. High-energy neutrinos from the sun and cold dark matter. Nucl.Phys., B279:804, 1987. [25] William H. Press and David N. Spergel. Capture by the sun of a galactic population of weakly interacting massive particles. Astrophys.J., 296:679–684, 1985. [26] K. Griest and D. Seckel. Cosmic asymmetry, neutrinos and the sun. Nucl.Phys., B283:681, 1987.
|