跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 14:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳佑昇
研究生(外文):Chen, Yu-Sheng
論文名稱:氧化鉿電阻式記憶體可靠度之研究
論文名稱(外文):Study of Switching Reliability for HfOx Based Resistive Memory
指導教授:連振炘
指導教授(外文):Lien, Chenhsin
學位類別:博士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:138
中文關鍵詞:氧化鉿電阻式記憶體可靠度
外文關鍵詞:HfOxRRAMreliability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
此篇論文之目的為研究與改善氧化鉿電阻式記憶體的電阻轉換特性可靠度,雖然3 nm氧化鉿元件不需要生成過程且展現足夠的高低電阻比值與不錯的記憶體特性,然而,由於此種元件不夠高的高阻態使其無法降低操作電流,顯示3 nm氧化鉿不適合電阻式記憶體未來發展。電流暴衝會降低高阻態之阻值以及提高操作電流,是元件操作過程中最大的問題,可藉由電晶體來有效控制限流,所以10 nm氧化鉿1T1R元件展現超過1 Mohm之高阻態、超過100之高低電阻比值與高達1010次的操作次數。除了單元元件,我們更研究1kb陣列之操作可靠度,在100 μA操作電流下1kb陣列可被操作達106次,以新穎寫入驗證機制可有效抑制軟錯誤,且在操作過程中能夠集中高低阻態的分布以及增加高低電阻比值,此外,我們提出針對低阻態的新穎SRS驗證機制可能物理模型。對於奈米級元件,我們開發了concave與pillar結構並研究其電阻轉換的行為,在concave結構,30 nm的1T1R元件成功被製作且展現基本的特性,但concave在結構上有電流暴衝的問題以致元件特性無法被改善,必須使用pillar元件來解決結構上電流暴衝的問題,50 nm的pillar元件成功被製作,以不具與Ti反應的氮化矽為覆蓋層能夠有效提升其操作特性,如:與深微米元件相當的高阻態、200 °C的熱穩定性以及良好的操作可靠度。由此可知,氧化鉿電阻式記憶體具有優異的操作次數達1010、在1kb陣列有很高的元件良率與相當大的高低電阻比值、以及可縮小至30 nm的微縮性,加上低操作功耗以及高速操作,使氧化鉿電阻式記憶體能夠有取代動態隨機存取與快閃記憶體,成為下世代的非揮發性記憶體的潛力。
The motivation of this thesis is to study and to improve the switching reliability of the HfOX resistive memory. Although the forming-free device with a 3-nm-thick HfOX film exhibits large on/off resistance ratio and good memory performances, the RHIGH of the forming-free device is not high enough to guarantee lower the operation current. Current overshoot, which degrades the RHIGH and elevating the operation current, is a critical issue for the operation of resistive memory and can be solved by using the transistor to perfectly clamp the current. The high RHIGH over 1 Mohm, large on/off ratio of 100, and excellent endurance of 1010 cycles is demonstrated for the 10-nm-thick HfOX device with 1T1R architecture. Under the appropriate current of 100 μA, the 1kb memory array exhibits the endurance exceeding more than 106 cycles. The effective suppression of soft-errors by novel verification methods can tighten RHIGH and RLOW distributions and restore the on/off ratio of the 1kb array during the endurance test. A possible scenario for the novel high voltage SET-RESET-SET (SRS) verification of low resistance state is addressed. Two nanometer scale devices with the concave and pillar structure are fabricated and investigated for the resistive switching. The 30 nm 1T1R device with adequate resistive switching performances is demonstrated in the concave structure. By using a Si3N4 encapsulation layer which is inert to Ti capping layer, the 50 nm pillar device exhibits a high RHIGH closing to that of micrometer scale control device, robust thermal immunity at 200 °C, good cycling reliability, and no current overshoot problem. Owing to excellent switching endurance of 1010 cycles, high device yield and large on/off ratio in the 1kb array, and superior scalability to 30 nm, the HfOX resistive memory with low operation power and ultra-high switching speed has a strong potential for replacing DRAM and flash, and being the next generation non-volatile memory.
ABSTRACT I
中文摘要 II
ACKNOWLEDGEMENTS III
TABLE OF CONTENTS IV
LIST OF TABLES VII
LIST OF FIGURES VIII

Chapter 1 Introduction………………………………………………………... 1
1-1 Background…………………………………………………………… 1
1-2 Literature review……………………………………………………… 2
1-3 Motivation…………………………………………………………… 6
Chapter 2 Sample Fabrication and Measurement Setup…………………… 11
2-1 Fabrication of submicron device……………………………………… 11
2-2 Fabrication of 1kb chip……………………………………………… 12
2-3 Fabrication of nanometer scale device………………………………… 13
2-4 Introduction to measurement setup…………………………………… 14
Chapter 3 Switching Reliability of Submicron Device……………………… 22
3-1 Forming-free device…………………………………………………… 22
3-1-1 Resistive switching characteristic…………………………… 22
3-1-2 Reliability……………………………………………………… 25
3-1-3 1T1R configuration…………………………………………… 26
3-2 Current overshoot and current effect on switching reliability………… 28
3-2-1 Current overshoot issue……………………………………… 28
3-2-2 Current effect on memory performance……………………… 29
3-3 High endurance of 1T1R device……………………………………… 33
3-3-1 Compliance current effect…………………………………… 33
3-3-2 Operation energy effect……………………………………… 36
3-3-3 Analysis and prediction……………………………………… 39
Chapter 4 Switching Reliability of 1kb Chip………………………………… 64
4-1 Switching endurance………………………………………………… 64
4-1-1 Resistive switching characteristic…………………………… 64
4-1-2 Yield analysis of HRS and LRS……………………………… 65
4-1-3 Survivor rate…………………………………………………… 67
4-2 Switching endurance investigation…………………………………… 68
4-2-1 Compliance current effect…………………………………… 68
4-2-2 Operation voltage effect……………………………………… 70
4-2-3 Process condition effect……………………………………… 71
4-3 Verification method…………………………………………………… 72
4-3-1 Verification sequence and yield improvement………………… 72
4-3-2 Electrical analysis of verification method…………………… 74
Chapter 5 Switching Reliability of Nanometer Scale Device……………… 96
5-1 Concave structure device……………………………………………… 96
5-1-1 Resistive switching characteristic…………………………… 96
5-1-2 Reliability……………………………………………………… 97
5-1-3 Current overshoot issue……………………………………… 98
5-2 Pillar structure device………………………………………………… 100
5-2-1 Resistive switching characteristic…………………………… 100
5-2-2 Encapsulation layer effect…………………………………… 101
5-2-3 Reliability……………………………………………………… 103
Chapter 6 Conclusions and Future Works………………………………… 117
6-1 Conclusions…………………………………………………………… 117
6-2 Future works………………………………………………………… 119
REFERENCES………………………………………………………………… 120
PUBLICATION LIST………………………………………………………… 131

[1] International Technology Roadmap for Semiconductor (ITRS), 2010 edition.
[2] C. Y. Lu, K. Y. Hsieh, and R. Liu, “Future challenges of flash memory technologies,” Microelecton. Eng., vol. 86, pp. 283-286, 2009.
[3] G. Atwood, “Future directions and challenges for ETox flash memory scaling,” IEEE Trans. Device Mater. Rel., vol. 4, pp. 301-305, 2004.
[4] Y. M. Kang, H. J. Joo, J. H. Park, S. K. Kang, H.-H. Kim, S. G. Oh, H. S. Kim, J. Y. Kang, J. Y. Jung, D. Y. Choi, E. S. Lee, S. Y. Lee, H. S. Jeong, and K. Kim, “World smallest 0.34μm2 COB cell 1T1C 64Mb FRAM with new sensing architecture and highly reliable MOCVD PZT integration technology,” Symp. On VLSI Tech. Dig., pp. 230-231, 2006.
[5] D. C. Worledge, G. Hu, P. L. Trouilloud, D. W. Abraham, S. Brown, M. C. Gaidis, J. Nowak, E. J. O’Sullivan, R. P. Robertazzi, J. Z. Sun, and W. J. Gallagher, “Switching distributions and write reliability of perpendicular spin torque MRAM,” in IEDM Tech. Dig., pp. 296-299, 2010.
[6] G. Servalli, “A 45nm generation phase change memory technology,” in IEDM Tech. Dig., pp. 113-116, 2009.
[7] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D.-S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo, U.-I. Chung, and J. T. Moon, “Highly scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses,” in IEDM Tech. Dig., pp. 587-590, 2004.
[8] T. W. Hickmott, “Low-frequency negative resistance in thin anodic oxide films,” J. Appl. Phys., vol. 33, pp. 2669-2682, 1962.
[9] D. R. Lamb and P. C. Rundle, “A non-filamentary switching action in thermally grown silicon dioxide films,” Br. J. Appl. Phys., vol. 18, pp. 29-32, 1967.
[10] S. Q. Liu, N. J. Wu, and A. Ignatiev, “Electric-pulse-induced reversible resistance change effect in magnetoresistive films,” Appl. Phys. Lett., vol. 76, pp. 2749-2751, 2000.
[11] W. W. Zhuang, W. Pan, B. D. Ulrich, J. J. Lee, L Strcker, A. Burmaster, D. R. Eveans, S. T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, K. Sakiyama, Y. Wang, S. Q. Liu, N. J. Wu, and A. Ignatiev, “Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM),” in IEDM Tech. Dig., pp. 193-196, 2002.
[12] D. J. Seong, J. Park, N. Lee, M. Hasan, S. Jung, H. Choi, J. Lee, M. Jo, W. Lee, S. Park, S. Kim, Y. H. Jang, Y. Lee, M. Sung, D. Kil, Y. Hwang, S. Chung S. Hong, J. Roh, and H. Hwang, “Effect of oxygen migration and interface engineering on resistance switching behavior of reactive metal/polycrystalline Pr0.7Ca0.3MnO3 device for nonvolatile memory applications,” in IEDM Tech. Dig., pp. 101-104, 2009.
[13] A. Chen, S. Haddad, Y. C. Wu, T. N. Fang, Z. Lan, S. Avanzino, S. Pangrle, M. Buynoski, M. Rathor, W. Cai, N. Tripsas, C. Bill, M. VanBuskirk, and M. Taguchi, “Non-volatile resistive switching for advanced memory application,” in IEDM Tech. Dig., pp. 746-749, 2005.
[14] U. Russo, D. Ielmini, C. Cagli, A. L. Lacaita, S. Spita, C. Wiemer, M. Perego, and M. Fanciulli, “Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM,” in IEDM Tech. Dig., pp. 775-778, 2007.
[15] Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shinakawa, H. Sugaya, T. Takagi, R. Yasuhara, K. Horiba, H. Kumigashira, and M. Oshima, “Highly reliable TaOX ReRAM and direct evidence of redox reaction mechanism,” in IEDM Tech. Dig., pp. 293-296, 2008.
[16] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M.-J. Tsai, “Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM,” in IEDM Tech. Dig., pp. 297-300, 2008.
[17] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges,” Adv. Mater., vol. 21, pp. 2632-2663, 2009.
[18] Y. S. Chen, H. Y. Lee, P. S. Chen, P. Y. Gu, C. W. Chen, W. P. Lin, W. H. Liu, Y. Y. Hsu, S. S. Sheu, P. C. Chiang, W. S. Chen, F. T. Chen, C. H. Lien, and M.-J. Tsai, “Highly scalable hafnium oxide memory with improvements of resistive distribution and read disturb immunity,” in IEDM Tech. Dig., pp. 105-108, 2009.
[19] Y. B. Kim, S. R. Lee, D. Lee, C. B. Lee, M. Chang, J. H. Hur, M. J. Lee, G. S. Park, C. J. Kim, U. I. Chung, I. K. Yoo, and K. Kim, “Bi-layered RRAM with unlimited endurance and extremely uniform switching,” Symp. On VLSI Tech. Dig., pp. 52-53, 2011.
[20] Y. Wu, B. Lee, and H.-S. P. Wong, “Al2O3-based RRAM using atomic layer deposition (ALD) with 1-□A RESET current,” IEEE Electron Device Lett., vol. 31, pp. 1449-1451, 2010.
[21] W. Kim, S. I. Park, Z. Zhang, Y. Y. Liauw, D. Sekar, H.-S. P. Wong, and S. S. Wong, “Bi-layered RRAM with unlimited endurance and extremely uniform switching,” Symp. On VLSI Tech. Dig., pp. 52-53, 2011.
[22] J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S. Williams, “Memristive switching mechanism for metal/oxide/metal nanodevices,” Nature Nanotech., vol. 3, pp. 429-433, 2008.
[23] G. H. Kim, J. H. Lee, J. Y. Seok, S. J. Song, J. H. Yoon, K. J. Yoon, M. H. Lee, K. M. Kim, H. D. Lee, S. W. Ryu, T. J. Park, and C. S. Hwang, “Improved endurance of resistive switching TiO2 thin film by hourglass shaped Magnéli filaments,” Appl. Phys. Lett., vol. 98, pp. 262901, 2011.
[24] H. Y. Lee, Y. S. Chen, P. S. Chen, T. Y. Wu, F. Chen, C. C. Wang, P. J. Tzeng, M.-J. Tsai, and C. Lien, “Low-power and nanosecond switching in robust hafnium oxide reactive memory with a thin Ti cap,” IEEE Electron Device Lett., vol. 31, pp. 44-46, 2010.
[25] N. Xu, B. Gao, L. F. Liu, B. Sun, X. Y. Liu, R. Q Han, J. F. Kang, and B. Yu, “A unified physical model of switching behavior in oxide-based RRAM,” Symp. On VLSI Tech. Dig., pp. 100-101, 2008.
[26] B. Gao, S. Yu, N. Xu, L. F. Liu, B. Sun, X. Y. Liu, R. Q. Han, J. F. Kang, B. Yu, Y. Y. Wang, “Oxide-based RRAM switching mechanism: a new ion-transport-recombination model,” in IEDM Tech. Dig., pp. 563-566, 2009.
[27] H. Y. Lee, P. S. Chen, C. C. Wang, S. Maikap, P. J. Tzeng, C. H. Lin, L. S. Lee, and M.-J. Tsai, “Low-power switching of nonvolatile resistive memory using hafnium oxide,” Jpn. J. Appl. Phys., vol. 46, pp. 2175-2179, 2007.
[28] K. Tsunoda, K. Kinoshita, H. Noshiro, Y. Yamazaki, T. Iizuka, Y. Ito, A. Takahashi, A. Okano, Y. Sato, T. Fukano, M. Aoki, and Y. Sugiyama, “Low power and high speed switching of Ti-doped NiO ReRAM under the unipolar voltage source of less than 3 V,” in IEDM Tech. Dig., pp. 767-770, 2007.
[29] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, F. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, M.-J. Tsai, and C. Lien, “HfOX bipolar resistive memory with robust endurance using AlCu as buffer electrode,” IEEE Electron Device Lett., vol. 30, pp. 703-705, 2009.
[30] P. S. Chen, H. Y. Lee, Y. S. Chen, F. Chen, and M.-J. Tsai, “Improved bipolar resistive switching of HfOX/TiN stack with a resistive metal layer and post metal annealing,” Jpn. J. Appl. Phys., vol. 49, pp. 04DD18, 2010.
[31] U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, “Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) device,” IEEE Trans. Electron Devices, vol. 56, pp. 193-199, 2009.
[32] L. Goux, X. P. Wang, Y. Y. Chen, L. Pantisano, N. Jossart, B. Govoreanu, J. A. Kittl, M. Jurczak, L. Altimime, and D. J. Wouters, “Roles and effects of TiN and Pt electrodes in resistive-switching HfO2 systems,” Electrochem. Solid-State Lett., vol. 14, pp. H244-H246, 2011.
[33] Y. S. Chen, H. Y. Lee, P. S. Chen, T. Y. Wu, C. C. Wang, P. J. Tzeng, F. Chen, M.-J. Tsai, and C. Lien, “An ultrathin forming-free HfOX resistive memory with excellent electrical performance,” IEEE Electron Device Lett., vol. 31, pp. 1473-1475, 2010.
[34] H. Y. Jeong, J. Y. Lee, and S. Y. Choi, “Direct observation of microscopic change induced by oxygen vacancy drift in amorphous TiO2 thin films,” Appl. Phys. Lett., vol. 97, pp. 042109, 2010.
[35] H. Y. Jeong, J. Y. Lee, S. Y. Choi, and J. W. Kim “Microscopic origin of bipolar resistive switching of nanoscale titanium oxide thin films,” Appl. Phys. Lett., vol. 95, pp. 162108, 2009.
[36] M. J. Lee, Y. Park, B. S. Kang, S. E. Ahn, C. Lee, K. Kim, W. Xianyu, G. Stefanovich, J. H. Lee, S. J. Chung, Y. H. Kim, C. S. Lee, J. B. Park, I. G. Baek, and I. K. Yoo, “2-stack 1D-1R cross-point structure with oxide diodes as switch elements for high density resistance RAM applications,” in IEDM Tech. Dig., pp. 771-774, 2007.
[37] D. C. Kim, M. J. Lee, S. E. Ahn, S. Seo, J. C. Park, I. K. Yoo, I. G. Baek, H. J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U.-I. Chung, J. T. Moon, and B. I. Ryu, “Improvement of resistive memory switching in NiO using IrO2,” Appl. Phys. Lett., vol. 88, pp. 232106, 2006.
[38] C. Park, S. H. Jeon, S. C. Chae, S. Han, B. H. Park, S. Seo, and D. W. Kim, “Role of structural defects in the unipolar resistive switching characteristics of Pt/NiO/Pt structures,” Appl. Phys. Lett., vol. 93, pp. 042102, 2008.
[39] Y. Sakotsubo, M. Terai, S. Kotsuji, Y. Saito, M. Tada, Y. Yabe, and H. Hada, “A new approach for improving operating margin of unipolar ReRAM using local minimum of reset voltage,” Symp. On VLSI Tech. Dig., pp. 87-88, 2010.
[40] S. B. Lee, S. C. Chae, S. H. Chang, and T. W. Noh, “Predictability of reset switching voltages in unipolar resistance switching,” Appl. Phys. Lett., vol. 94, pp. 173504, 2009.
[41] D. Ielmini, F. Nardi, C. Cagli, and A. L. Lacaita, “Size-dependent retention time in NiO-based resistive-switching memories,” IEEE Electron Device Lett., vol. 31, pp. 353-355, 2010.
[42] X. A. Tran, H. Y. Yu, B. Gao, J. F. Kang, X. W. Sun, Y.-C. Yeo, B. Y. Nguyen, and M. F. Li, “Ni electrode unipolar resistive RRAM performance enhancement by AlO¬Y incorporation into HfOX switching dielectrics,” IEEE Electron Device Lett., vol. 32, pp. 1290-1292, 2011.
[43] I. G. Baek, D. C. Kim, M. J. Lee, H.-J. Kim, E. K. Yim, M. S. Lee, J. E. Lee, S. E. Ahn, S. Seo, J. H. Lee, J. C. Park, Y. K. Cha, S. O. Park, H. S. Kim, I. K. Yoo, U.-I. Chung, J. T. Moon, and B. I. Ryu, “Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application,” in IEDM Tech. Dig., pp. 750-753, 2005.
[44] F. Nardi, D. Ielmini, C. Cagli, S. Spiga, M. Fanciulli, L. Goux, D. J. Wouters, “Control of filament size and reduction of reset current below 10 μA in NiO resistance switching memories,” Solid-State Electron., vol. 58, pp. 42-47, 2011.
[45] L. Goux, J. G. Lisoni, X. P. Wang, M. Jurczak, and D. J. Wouters, “Optimized Ni oxidation in 80-nm contact holes for integration of forming-free and low-power Ni/NiO/Ni memory cells,” IEEE Trans. Electron Devices, vol. 56, pp. 2363-2368, 2009.
[46] C. H. Ho, C. L. Hsu, C. C. Chen, J. T. Liu, C. S. Wu, C. C. Huang, C. Hu, and F. L. Yang, “9nm half-pitch functional resistive memory cell with <1μA programming current using thermally oxidized sub-stoichiometric WOX film,” in IEDM Tech. Dig., pp. 436-439, 2010.
[47] W. C. Chien, Y. R. Chen, Y. C. Chen, A. T. H. Chuang, F. M. Lee, Y. Y. Lin, E. K. Lai, Y. H. Shih, K. Y. Hsieh, and C. Y. Lu, “A forming-free WOX resistive memory using a novel self-align filed enhancement feature with excellent reliability and scalability,” in IEDM Tech. Dig., pp. 440-443, 2010.
[48] Y. Wu, B. Lee, and H.-S. P. Wong, “Al2O3-based RRAM using atomic layer deposition (ALD) with 1-μA RESET current,” IEEE Electron Device Lett., vol. 31, pp. 1449-1451, 2010.
[49] J. Yi, H. Choi, S. Lee, J. Lee, D. Son, S. Lee, S. Hwang, S. Song, J. Park, S. Kim, W. Kim, W. Kim, J. Y. Kim, S. Lee, J. Moon, J. You, M. Joo, J. Roh, S. Park, S. W. Chung, J. Lee, and S. J. Hong, “Highly reliable and fast nonvolatile hybrid switching ReRAM memory using thin Al2O3 demonstrated at 54nm memory array,” Symp. On VLSI Tech. Dig., pp. 48-49, 2011.
[50] S. S. Sheu, M. F. Chang, K. F. Lin, C. W. Wu, Y. S. Chen, P. F. Chiu, C. C. Kuo, Y. S. Yang, P. C. Chiang, W. P. Lin, C. H. Lin, H. Y. Lee, P. Y. Gu, S. M. Wang, F. T. Chen, K. L. Su, C. H. Lien, K. H. Cheng, H. T. Wu, T. K. Ku, M. J. Kao, and M.-J. Tsai, “A 4Mb embedded SLC resistive-RAM marco with 7.2ns read-write random-access time and 160ns MLC-access capability,” ISSCC, pp. 200-201, 2011.
[51] C. Hobbs, H. Tseng, K. Reid, B. Taylor, L. Dip, L. Hebert, R. Garcia, R. Hegde, J. Grant, D. Gilmer, A. Franke, V. Dhandapani, M. Azrak, L. Prabhu, R. Rai, S. Bagchi, J. Conner, S. Backer, F. Dumbuya, B. Nguyen, and P. Tobin, “80 nm poly-Si gate CMOS with HfO2 gate dielectric,” in IEDM Tech. Dig., pp. 651-654, 2001.
[52] S. B. Samavedam, L. B. La, J. Smith, S. D. Murthy, E. Luckowski, J. Schaeffer, M. Zavala, R. Martin, V. Dhandapani, D. Triyoso, H. H. Tseng, P. J. Tobin, D. C. Gilmer, C. Hobbs, W. J. Taylor, J. M. Grant, R. I. Hedge, J. Mogab, C. Thomas, P. Abramowitz, M. Moosa, J. Conner, J. Jiang, V. Arunachalam, M. Sadd, B. Y. Nguyen, and B. White, “Dual-metal gate CMOS with HfO2 gate dielectric,” in IEDM Tech. Dig., pp. 433-436, 2002.
[53] D. Ha, H. Takeuchi, Y. K. Choi, T. J. King, W. P. Bai, D. L. Kwong, A. Agarwai, and M. Ameen, “Molybdenum-gate HfO2 CMOS FinFET technology,” in IEDM Tech. Dig., pp. 643-646, 2004.
[54] S. H. Oh, J. H. Chung, J. H. Choi, C. Y. Yoo, Y. S. Kim, S. T. Kim, U. I. Chung, and J. T. Moon, “TiN/HfO2/TiN capacitor technology applicable to 70nm generation DRAMs,” Symp. On VLSI Tech. Dig., pp. 73-74, 2003.
[55] J. H. Choi, J. H. Chung, S. H. Oh, J. S. Choi, C. Y. Yoo, S. T. Kim, U. I. Chung, and J. T. Moon, “New approaches to improve the endurance of TiN/HfO2/TiN capacitor during the back-end process for 70nm DRAM device,” in IEDM Tech. Dig., pp. 661-664, 2003.
[56] H. Y. Lee, P. S. Chen, T. Y. Wu, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, M.-J. Tsai, and C. Lien, “Electrical evidence of unstable anodic interface in Ru/HfOX/TiN unipolar resistive memory,” Appl. Phys. Lett., vol. 92, pp. 142911, 2008.
[57] X. P. Wang, Y. Y. Chen, L. Pantisano, L. Goux, M. Jurczak, G. Groeseneken, and D. J. Wouters, “Effect of anodic interface layers on the unipolar switching of HfO2-based resistive RAM,” in Proc. VLSI-TSA, pp. 140-141, 2010.
[58] K. Kinoshita, K. Tsunoda, Y. Sato, H. Noshiro, S. Yagaki, M. Aoki, and Y. Sugiyama, “Reduction in the reset current in a resistive random access memory consisting of NiOX brought about by reducing a parasitic capacitance,” Appl. Phys. Lett., vol. 93, pp. 033506, 2008.
[59] S. S. Sheu, P. C. Chiang, W. P. Lin, H. Y. Lee, P. S. Chen, Y. S. Chen, T. Y. Wu, F. T. Chen, K. L. Su, M J. Kao, K. H. Cheng, M.-J. Tsai, “A 5ns fast write multi-level non-volatile 1 K bits RRAM memory with advance write scheme,” Symp. On VLSI Circuit, pp. 82-83, 2009.
[60] H. B. Lv, M. Yin, Y. L. Song, X. F. Fu, L. Tang, P. Zhou, C. H. Zhao, T. A. Tang, B. A. Chen, and Y. Y. Lin, “Forming process investigation of CuxO memory films,” IEEE Electron Device Lett., vol. 29, pp. 47-49, 2008.
[61] C. Y. Lin, D. Y. Lee, S. Y. Wang, C. C. Lin, T. Y. Tseng, “Effect of thermal treatment on resistive switching characteristics in Pt/Ti/Al2O3/Pt devices,” Surf. Coat. Technol., vol. 203, pp. 628-631, 2008.
[62] M. A. Lampert and P. Mark, Current Injection in Solids. New York: Academic 1970.
[63] A. Odagawa, H. Sato, I. H. Inoue, H. Akoh, M. Kawasaki, and Y. Tokura, “Forming process investigation of CuxO memory films,” IEEE Electron Device Lett., vol. 29, pp. 47-49, 2008.
[64] B. Chen, Y. Lu, B. Gao, Y. H. Fu, F. F. Zhang, P. Huang, Y. S. Chen, L. F. Liu, X. Y. Liu, J. F. Kang, Y. Y. Wang, Z. Fang, H. Y. Yu, X. Li, X. P. Wang, N. Singh, G. Q. Lo, and D. L. Kwong, “Physical mechanism of endurance degradation in TMO-RRAM,” in IEDM Tech. Dig., pp. 283-286, 2011.
[65] K. Kinoshita, K. Tsunoda, Y. Sato, H. Noshiro, S. Yagaki, M. Aoki, and Y. Sugiyama, “Reduction in the reset current in a resistive random access memory consisting of NiOX brought about by reducing a parasitic capacitance,” Appl. Phys. Lett., vol. 93, pp. 033506, 2008.
[66] D. K. Kim, D. S. Suh, and T. Park, “Pulse-programming instabilities of unipolar-type NiOX,” IEEE Electron Device Lett., vol. 31, pp. 600-602, 2010.
[67] P. Y. Gu, Y. S. Chen, H. Y. Lee, P. S. Chen, W. H. Liu, W. S. Chen, Y. Y. Hsu, F. Chen, and M.-J. Tsai, “Scalability with silicon nitride encapsulation layer for Ti/HfOX pillar RRAM,” in VLSI-TSA proceeding, pp. 146-147, 2010.
[68] Ch. Wenger, M. Lukosius, H.-J. Müssig, G. Ruhl, S. Pasko, and Ch. Lohe, “Influence of the electrode material on HfO2 metal-insulator-metal capacitors,” J. Vac. Sci. Technol. B, vol. 27, pp. 286-289, 2009.
[69] D. Lee, D. J. Seong, H. J. Choi, I. Jo, R. Dong, W. Xiang, S. Oh, M. Pyun, S. O. Seo, S. Heo, M. Jo, D. K. Hwang, H. K. Park, M. Chang, M. Hasan, and H. Hwang, “Excellent uniformity and reproducible resistance switching characteristics of doped binary metal oxides for non-volatile resistance memory application,” in IEDM Tech. Dig., pp. 797-800, 2006.
[70] H. J. Wan, P. Zhou, L. Ye, Y. Y. Lin, T. A. Tang, H. M. Wu, and M. H. Chi, “In situ observation of compliance-current overshoot and its effect on resistive switching,” IEEE Electron Device Lett., vol. 31, pp. 246-248, 2010.
[71] M. Terai, Y. Sakotsubo, S. Kotsuji, and H. Hada, “Resistance controllability of Ta2O5/TiO2 stack ReRAM for low-voltage and multilevel operation,” IEEE Electron Device Lett., vol. 31, pp. 204-206, 2010.
[72] M. J. Kim, I. G. Baek, Y. H. Ha, S. J. Baik, J. H. Kim, D. J. Seong, S. J. Kim, Y. H. Kwon, C. R. Lim, H. K. Park, D. Gilmer, P. Kirsch, R. Jammy, Y. G. Shin, S. Choi, and C. Chung, “Low power operation bipolar TMO ReRAM for sub 10 nm era,” in IEDM Tech. Dig., pp. 444-447, 2010.
[73] J. J. Yang, M.-X. Zheng, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley, G. M. Ribeiro, and R. S. Williams, “High switching endurance in TaOX memristive devices,” Appl. Phys. Lett., vol. 97, pp. 232102, 2010.
[74] H. Y. Lee, Y. S. Chen, P. S. Chen, P. Y. Gu, Y. Y. Hsu, S. M. Wang, W. H. Liu, C. H. Tsai, S. S. Sheu, P. C. Chiang, W. P. Lin, C. H. Lin, W. S. Chen, F. T. Chen, C. H. Lien, and M.-J. Tsai, “Evidence and solution of over-RESET problem for HfOX based resistive memory with sub-ns switching speed and high endurance,” in IEDM Tech. Dig., pp. 460-463, 2010.
[75] W. C. Chien, M. H. Lee, F. M. Lee, Y. Y. Lin, H. L. Lung, K. Y. Hsieh, and C. Y. Lu, “A multi-level 40nm WOX resistive memory with excellent reliability,” in IEDM Tech. Dig., pp. 725-728, 2011.
[76] C. Sire, S. Blonkowski, M. J. Gordon, and T. Baron, “Statistics of electrical breakdown field in HfO2 and SiO2 films from millimeter to nanometer length scales,” Appl. Phys. Lett., vol. 91, pp. 242905, 2007.
[77] W. D. Kim, J. H. Joo, Y. K. Jeong, S. J. Won, S. Y. Park, S. C. Lee, C. Y. Yoo, S. T. Kim, and J. T. Moon, “Development of CVD-Ru/Ta2O5/CVD-Ru capacitor with concave structure for multigigabit-scale DRAM generation,” in IEDM Tech. Dig., pp. 263-266, 2001.
[78] H. Noh, S. Jeong, S. Lee, Y. Kim, W. Cho, M. Huh, G. Jeong, J. Suh, H. Kweon, J. Roh, K. Shin, and G. Jeong, “A 0.08μm2–sized 8F2 stack DRAM cell for multi-gigabit DRAM,” Symp. On VLSI Tech. Dig., pp. 56-57, 2002.
[79] G. V. Samsonov, The oxide Hand Book, 2nd ed. (IFI/Plenum, New York, 1982), pp. 44-48.
[80] J.-S Park, J. S. Byun, D. K. Sohn, B. H. Lee, J. W. Park, and J. J. Kim, “Dopant effects on lateral silicide growth in self-aligned titanium silicide process,” J. Electrochem, Soc., vol. 145, pp. 3585-3589, 1998.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊