|
[1] E. Andrianantoandro, S. Basu, D. K. Karig et al., “Synthetic biology: new engineering rules for an emerging discipline,” Molecular Systems Biology, vol. 2, no. 2006.0028, pp. 1-14, 2006. [2] M. C. Chang, and J. D. Keasling, “Production of isoprenoid pharmaceuticals by engineered microbes,” Nature chemical biology, vol. 2, no. 12, pp. 674-81, Dec, 2006. [3] J. W. Chin, “Programming and engineering biological networks,” Current Opinion in Structural Biology, vol. 16, no. 4, pp. 551-6, Aug, 2006. [4] E. L. Haseltine, and F. H. Arnold, “Synthetic gene circuits: design with directed evolution,” Annual review of biophysics and biomolecular structure, vol. 36, pp. 1-19, 2007. [5] T. S. Gardner, C. R. Cantor, and J. J. Collins, “Construction of a genetic toggle switch in Escherichia coli,” Nature, vol. 403, no. 6767, pp. 339-42, Jan 20, 2000. [6] B. P. Kramer, A. U. Viretta, M. Daoud-El-Baba et al., “An engineered epigenetic transgene switch in mammalian cells,” Nat Biotechnol, vol. 22, no. 7, pp. 867-70, Jul, 2004. [7] S. Basu, R. Mehreja, S. Thiberge et al., “Spatiotemporal control of gene expression with pulse-generating networks,” Proc Natl Acad Sci U S A, vol. 101, no. 17, pp. 6355-60, Apr 27, 2004. [8] A. E. Friedland, T. K. Lu, X. Wang et al., “Synthetic gene circuits that count,” Science, vol. 324, no. 5931, pp. 1199-202, May 29, 2009. [9] M. R. Atkinson, M. A. Savageau, J. T. Myers et al., “Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli,” Cell, vol. 113, no. 5, pp. 597-607, May 30, 2003. [10] K. I. Goh, B. Kahng, and K. H. Cho, “Sustained oscillations in extended genetic oscillatory systems,” Biophys J, vol. 94, no. 11, pp. 4270-6, Jun, 2008. [11] J. Stricker, S. Cookson, M. R. Bennett et al., “A fast, robust and tunable synthetic gene oscillator,” Nature, vol. 456, no. 7221, pp. 516-9, Nov 27, 2008. [12] M. Tigges, T. T. Marquez-Lago, J. Stelling et al., “A tunable synthetic mammalian oscillator,” Nature, vol. 457, no. 7227, pp. 309-12, Jan 15, 2009. [13] K. Rinaudo, L. Bleris, R. Maddamsetti et al., “A universal RNAi-based logic evaluator that operates in mammalian cells,” Nat Biotechnol, vol. 25, no. 7, pp. 795-801, Jul, 2007. [14] M. N. Win, and C. D. Smolke, “Higher-order cellular information processing with synthetic RNA devices,” Science, vol. 322, no. 5900, pp. 456-60, Oct 17, 2008. [15] H. Kobayashi, M. Kaern, M. Araki et al., “Programmable cells: interfacing natural and engineered gene circuits,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 22, pp. 8414-9, Jun 1, 2004. [16] M. N. Win, and C. D. Smolke, “A modular and extensible RNA-based gene-regulatory platform for engineering cellular function,” Proc Natl Acad Sci U S A, vol. 104, no. 36, pp. 14283-8, Sep 4, 2007. [17] E. Andrianantoandro, S. Basu, D. K. Karig et al., “Synthetic biology: new engineering rules for an emerging discipline,” Molecular Systems Biology, vol. 2, pp. 2006 0028, 2006. [18] J. Hasty, D. McMillen, and J. J. Collins, “Engineered gene circuits,” Nature, vol. 420, no. 6912, pp. 224-30, Nov 14, 2002. [19] D. Sprinzak, and M. B. Elowitz, “Reconstruction of genetic circuits,” Nature, vol. 438, no. 7067, pp. 443-8, Nov 24, 2005. [20] M. L. Simpson, “Cell-free synthetic biology: a bottom-up approach to discovery by design,” Molecular Systems Biology, vol. 2, pp. 69, 2006. [21] N. J. Guido, X. Wang, D. Adalsteinsson et al., “A bottom-up approach to gene regulation,” Nature, vol. 439, no. 7078, pp. 856-60, Feb 16, 2006. [22] A. P. Arkin, and D. A. Fletcher, “Fast, cheap and somewhat in control,” Genome biology, vol. 7, no. 8, pp. 114, 2006. [23] Y. Yokobayashi, R. Weiss, and F. H. Arnold, “Directed evolution of a genetic circuit,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 26, pp. 16587-91, Dec 24, 2002. [24] A. C. Hawkins, F. H. Arnold, R. Stuermer et al., “Directed evolution of Vibrio fischeri LuxR for improved response to butanoyl-homoserine lactone,” Applied and environmental microbiology, vol. 73, no. 18, pp. 5775-81, Sep, 2007. [25] M. J. Dougherty, and F. H. Arnold, “Directed evolution: new parts and optimized function,” Current Opinion in Biotechnology, vol. 20, no. 4, pp. 486-91, Aug, 2009. [26] W. W. Gibbs, “Synthetic life,” Scientific American, vol. 290, no. 5, pp. 74-81, May, 2004. [27] B. Canton, A. Labno, and D. Endy, “Refinement and standardization of synthetic biological parts and devices,” Nature biotechnology, vol. 26, no. 7, pp. 787-794, 2008. [28] T. Ellis, X. Wang, and J. J. Collins, “Diversity-based, model-guided construction of synthetic gene circuits with predicted functions,” Nat Biotechnol, vol. 27, no. 5, pp. 465-71, May, 2009. [29] B. S. Chen, and C. H. Wu, “A systematic design method for robust synthetic biology to satisfy design specifications,” BMC Systems Biology, vol. 3, pp. 66, 2009. [30] B. S. Chen, C. H. Chang, and H. C. Lee, “Robust synthetic biology design: stochastic game theory approach,” Bioinformatics, vol. 25, no. 14, pp. 1822-30, Jul 15, 2009. [31] B. S. Chen, and C. H. Wu, “Robust Optimal Reference-Tracking Design Method for Stochastic Synthetic Biology Systems: T-S Fuzzy Approach,” Fuzzy Systems, IEEE Transactions on, vol. 18, no. 6, pp. 1144-1159, 2010. [32] C. H. Wu, W. Zhang, and B. S. Chen, “Multiobjective H(2)/H(infinity) synthetic gene circuit design based on promoter libraries,” Mathematical Biosciences, vol. 233, no. 2, pp. 111-25, Oct, 2011. [33] C. H. Wu, H. C. Lee, and B. S. Chen, “Robust synthetic gene circuit design via library-based search method,” Bioinformatics, vol. 27, no. 19, pp. 2700-6, Oct 1, 2011. [34] J. R. Kelly, A. J. Rubin, J. H. Davis et al., “Measuring the activity of BioBrick promoters using an in vivo reference standard,” J Biol Eng, vol. 3, pp. 4, 2009. [35] J. H. Leveau, and S. E. Lindow, “Predictive and interpretive simulation of green fluorescent protein expression in reporter bacteria,” J Bacteriol, vol. 183, no. 23, pp. 6752-62, Dec, 2001. [36] R. Y. Tsien, “The green fluorescent protein,” Annual Review of Biochemistry, vol. 67, pp. 509-544, 1998. [37] R. Heim, A. B. Cubitt, and R. Y. Tsien, “Improved green fluorescence,” Nature, vol. 373, no. 6516, pp. 663-4, Feb 23, 1995. [38] J. B. Andersen, C. Sternberg, L. K. Poulsen et al., “New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria,” Appl Environ Microbiol, vol. 64, no. 6, pp. 2240-6, Jun, 1998. [39] C. M. Southward, and M. G. Surette, “The dynamic microbe: green fluorescent protein brings bacteria to light,” Mol Microbiol, vol. 45, no. 5, pp. 1191-6, Sep, 2002. [40] B. P. Cormack, R. H. Valdivia, and S. Falkow, “FACS-optimized mutants of the green fluorescent protein (GFP),” Gene, vol. 173, no. 1 Spec No, pp. 33-8, 1996. [41] G. T. Horn, and R. D. Wells, “The leftward promoter of bacteriophage lambda. Structure, biological activity, and influence by adjacent regions,” The Journal of biological chemistry, vol. 256, no. 4, pp. 2003-9, Feb 25, 1981. [42] M. Brunner, and H. Bujard, “Promoter recognition and promoter strength in the Escherichia coli system,” EMBO J, vol. 6, no. 10, pp. 3139-44, Oct, 1987. [43] L. Rao, W. Ross, J. A. Appleman et al., “Factor independent activation of rrnB P1. An "extended" promoter with an upstream element that dramatically increases promoter strength,” J Mol Biol, vol. 235, no. 5, pp. 1421-35, Feb 4, 1994. [44] R. S. Cox, 3rd, M. G. Surette, and M. B. Elowitz, “Programming gene expression with combinatorial promoters,” Molecular Systems Biology, vol. 3, pp. 145, 2007. [45] C. R. Albano, L. RandersEichhorn, Q. Chang et al., “Quantitative measurement of green fluorescent protein expression,” Biotechnology Techniques, vol. 10, no. 12, pp. 953-958, Dec, 1996. [46] X. Wang, B. Errede, and T. C. Elston, “Mathematical analysis and quantification of fluorescent proteins as transcriptional reporters,” Biophys J, vol. 94, no. 6, pp. 2017-26, Mar 15, 2008. [47] H. de Jong, C. Ranquet, D. Ropers et al., “Experimental and computational validation of models of fluorescent and luminescent reporter genes in bacteria,” BMC Syst Biol, vol. 4, pp. 55, 2010. [48] D. W. Selinger, R. M. Saxena, K. J. Cheung et al., “Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation,” Genome research, vol. 13, no. 2, pp. 216-23, Feb, 2003. [49] H. Alper, C. Fischer, E. Nevoigt et al., “Tuning genetic control through promoter engineering,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 36, pp. 12678-12683, Sep 6, 2005. [50] R. Johansson, System modeling & identification, New Jersey: Prentice-Hall International, 1993. [51] U. Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits: Chapman & Hall/CRC, 2007. [52] K. F. Murphy, G. Balazsi, and J. J. Collins, “Combinatorial promoter design for engineering noisy gene expression,” Proc Natl Acad Sci U S A, vol. 104, no. 31, pp. 12726-31, Jul 31, 2007. [53] K. Hammer, I. Mijakovic, and P. R. Jensen, “Synthetic promoter libraries--tuning of gene expression,” Trends in biotechnology, vol. 24, no. 2, pp. 53-5, Feb, 2006. [54] G. Chen, and S. H. Hsu, Linear stochastic control systems: CRC, 1995. [55] W. Zhang, and B. S. Chen, “State feedback H∞ control for a class of nonlinear stochastic systems,” SIAM journal on control and optimization, vol. 44, pp. 1973-1991, 2006. [56] X. Chen, and K. Zhou, “Multiobjective H2/H∞ control design,” SIAM journal on control and optimization, vol. 40, no. 2, pp. 33, 2002. [57] B. S. Chen, C. S. Tseng, and H. J. Uang, “Mixed H2/H∞ fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach,” Fuzzy Systems, IEEE Transactions on, vol. 8, no. 3, pp. 249-265, 2000. [58] B. S. Chen, and W. Zhang, “Stochastic H2/H∞ control with state-dependent noise,” IEEE Transactions on Automatic Control, vol. 49, no. 1, pp. 45-57, 2004. [59] M. Fujita, K. Uchida, and F. Matsumura, “Gain perturbation tolerance in H∞ state feedback control,” International Journal of Control, vol. 51, no. 2, pp. 315-328, Feb, 1990. [60] T. Takagi, and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 15, no. 1, pp. 116-132, 1985. [61] B. S. Chen, Y. T. Chang, and Y. C. Wang, “Robust H infinity-stabilization design in gene circuits under stochastic molecular noises: fuzzy-interpolation approach,” IEEE Trans Syst Man Cybern B Cybern, vol. 38, no. 1, pp. 25-42, Feb, 2008. [62] G. Chesi, “LMI Techniques for Optimization Over Polynomials in Control: A Survey,” IEEE Transactions on Automatic Control, vol. 55, no. 11, pp. 2500-2510, 2010. [63] J. J. Grefenstette, “Optimization of control parameters for genetic algorithms,” IEEE Transactions on Systems, Man and Cybernetics, vol. 16, no. 1, pp. 122-128, 1986. [64] D. Goldberg, Genetic algorithms in search, optimization, and machine learning. 1989, 1989. [65] R. S. Cox, 3rd, M. G. Surette, and M. B. Elowitz, “Programming gene expression with combinatorial promoters,” Mol Syst Biol, vol. 3, pp. 145, 2007. [66] J. Gertz, E. D. Siggia, and B. A. Cohen, “Analysis of combinatorial cis-regulation in synthetic and genomic promoters,” Nature, vol. 457, no. 7226, pp. 215-8, Jan 8, 2009. [67] E. Segal, and J. Widom, “From DNA sequence to transcriptional behaviour: a quantitative approach,” Nat Rev Genet, vol. 10, no. 7, pp. 443-56, Jul, 2009. [68] K. Hammer, I. Mijakovic, and P. R. Jensen, “Synthetic promoter libraries--tuning of gene expression,” Trends Biotechnol, vol. 24, no. 2, pp. 53-55, Feb, 2006. [69] Y. Yokobayashi, R. Weiss, and F. H. Arnold, “Directed evolution of a genetic circuit,” Proc Natl Acad Sci U S A, vol. 99, no. 26, pp. 16587-91, Dec 24, 2002. [70] P. R. Jensen, and K. Hammer, “Artificial promoters for metabolic optimization,” Biotechnol Bioeng, vol. 58, no. 2-3, pp. 191-5, Apr 20-May 5, 1998. [71] K. Hammer, I. Mijakovic, and P. R. Jensen, “Synthetic promoter libraries--tuning of gene expression,” Trends Biotechnol, vol. 24, no. 2, pp. 53-5, Feb, 2006. [72] H. Alper, C. Fischer, E. Nevoigt et al., “Tuning genetic control through promoter engineering,” Proc Natl Acad Sci U S A, vol. 102, no. 36, pp. 12678-83, Sep 6, 2005. [73] A. Kinkhabwala, and C. C. Guet, “Uncovering cis regulatory codes using synthetic promoter shuffling,” PLoS One, vol. 3, no. 4, pp. e2030, 2008. [74] H. M. Salis, E. A. Mirsky, and C. A. Voigt, “Automated design of synthetic ribosome binding sites to control protein expression,” Nature biotechnology, vol. 27, no. 10, pp. 946-50, Oct, 2009. [75] B. Canton, A. Labno, and D. Endy, “Refinement and standardization of synthetic biological parts and devices,” Nature Biotechnology, vol. 26, pp. 787-793, 2008. [76] A. Arkin, “Setting the standard in synthetic biology,” Nature Biotechnology, vol. 26, pp. 771-774, 2008. [77] C. Wang, M. K. Oh, and J. C. Liao, “Directed evolution of metabolically engineered Escherichia coli for carotenoid production,” Biotechnology Progress, vol. 16, no. 6, pp. 922-926, 2000. [78] T. Bulter, S. Lee, W. Wong et al., “Design of artificial cell-cell communication using gene and metabolic networks,” Proceedings of the National Academy of Sciences, vol. 101, no. 8, pp. 2299-2304, 2004. [79] W. R. Farmer, and J. C. Liao, “Improving lycopene production in Escherichia coli by engineering metabolic control,” Nature Biotechnology, vol. 18, pp. 533-537, 2000. [80] M. Tucker, and R. Parker, “Mechanisms and control of mRNA decapping in Saccharomyces cerevisiae.,” Annu. Rev. Biochem., vol. 69, pp. 571-595, 2000. [81] T. K. Lu, A. S. Khalil, and J. J. Collins, “Next-generation synthetic gene circuits,” Nature biotechnology, vol. 27, no. 12, pp. 1139-50, Dec, 2009. [82] C. H. Wu, H. C. Lee, and B. S. Chen, “Robust synthetic gene circuit design via library-based search method,” Bioinformatics, vol. [in revision], 2011. [83] P. E. Purnick, and R. Weiss, “The second wave of synthetic biology: from modules to systems,” Nat Rev Mol Cell Biol, vol. 10, no. 6, pp. 410-22, Jun, 2009. [84] S. Boyd, L. El Ghaoui, E. Feron et al., Linear matrix inequalities in system and control theory: Society for Industrial Mathematics, 1994. [85] L. M. Tuttle, H. Salis, J. Tomshine et al., “Model-Driven Designs of an Oscillating Gene circuit,” Biophysical Journal, vol. 89, no. 6, pp. 3873-3883, 2005. [86] A. Arkin, J. Ross, and H. H. McAdams, “Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells,” Genetics, vol. 149, no. 4, pp. 1633-48, Aug, 1998.
|