|
[1] A. P. Chandrakasan, N. Verma, and D. C. Daly, “Ultralow-power electronics for biomedical applications, ” Ann. Rev. Biomed. Eng., vol. 10, no. 1, pp. 247-274, 2008. [2] B. Murmann, “ADC Performance Survey 1997-2011, ” [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html. [3] H.-C. Hong and G.-M. Lee, “A 65-fJ/Conversion-Step 0.9-V 200-kS/s Rail-to-Rail 8-bit Successive Approximation ADC,” IEEE J. Solid-State Circuits, vol. 42, no. 10, pp. 2161-2168, Oct. 2007. [4] N. Verma and A. P. Chandrakasan, “A 25?揅 100KS/s 12b ADC for wireless micro-sensor applications,” in Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2006, pp.222-223. [5] A. Anges, E. Bonizzoni, P. Malcovati, and F. Maloberti, “A 9.4-ENOB 1V 3.8?巰 100KS/s SAR ADC with time-domain comparator,” in Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2006, pp.246-247. [6] Y.-K. Chang, C.-S. Wang, and C.-K. Wang, “A 8bit 500-KS/s Low Power SAR ADC for Bio-Medical Applications, ”, in IEEE Asian Solid-State Circuits Conference Dig. Tech. Papers, Nov. 2008, pp. 228-231. [7] W.-Y. Pang, C-S. Wang, Y.-K. Chang, N.-K. Chou, and C.-K. Wang, "A 10-bit 500-KS/s Low Power SAR ADC with Splitting Comparator for Bio-Medical Applications," in IEEE Asian Solid-State Circuits Conference Dig. Tech. Papers, Nov. 2009, pp. 149-152. [8] C.-H. Kuo and C.-E. Hsieh, “A high energy-efficiency SAR ADC based on partial floating capacitor switching technique, ” in Proceedings of the ESSCIRC , Sept. 2011, pp.475-478, 12-16. [9] D. Zhang, A. Bhide, and A. Alvandpour, “A 53-nW 9.12-ENOB 1-kS/s SAR ADC in 0.13-μm CMOS for medical implant devices,” in Proceedings of the ESSCIRC , Sept. 2011, pp. 467-470. [10] S.-I. Chang, K. A.-Ashmouny, and E. Yoon, “A 0.5V 20fJ/conversion-step rail-to-rail SAR ADC with programmable time-delayed control units for low-power biomedical application,” in Proceedings of the ESSCIRC , Sept. 2011, pp. 339-342. [11] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. A. M. Klumperink , and B. Nauta “A 10-bit Charge-Redistribution ADC Consuming 1.9?巰 at 1MS/s,” IEEE Journal of Solid-State Circuits, vol. 45, no. 5, pp. 1007-1015, May. 2010. [12] A. Shikata, R. Sekimoto, T. Kuroda, and H. Ishikuro, "A 0.5V 1.1MS/s 6.3fJ/Conversion-step SAR ADC with Tri-Level Comparator in40nm CMOS," in VLSI Symp. Tech. Dig., Jun.2011, pp.262-263. [13] M. Yip and A. P. Chandrakasan, “A resolution-reconfigurable 5-to-10b 0.4-to-1V power scalable SAR ADC,” in Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2011. pp. 190-192. [14] P. Harpe, C. Chou, X. Wang, G. Dolmans, and H. de Groot, “A 30fJ/Conversion-Step 8b 0-to-10MS/s Asynchronous SAR ADC in 90nm CMOS,” in Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2010, pp.388-389. [15] B. P. Cinsburg and A. P. Chandrakasan, “An Energy-Efficient Charge Recycling Approach for a SAR Converter With Capacitive DAC, ” in IEEE Int. Symposium on Circuits and Systems vol.1, May 2005, pp. 184-187. [16] B. P. Ginsburg and A. P. Chandrakasan , “500-MS/s 5-bit ADC in 65-nm CMOS with Split Capacitor Array,” IEEE Journal of Solid-State Circuits, vol. 42, no. 4, pp. 739-747, Apr. 2007. [17] Y. Zhu, C.-H. Chan, U.-F. Chio, S.-W. Sin, S.-P. U, R. P. Martins, and F. Maloberti “A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp. 1111-1121, Jun. 2010. [18] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-S. Lin, “A 0.92mW 50-MS/s SAR ADC in 0.13?慆 CMOS Process,” in VLSI Symp. Tech. Dig., Jun.2009, pp.236-237. [19] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-S. Lin, “A 10-bit 50-MS/s SAR ADC With Monotonic Capacitor Switching Procedure,” IEEE Journal of Solid-State Circuits,.,vol. 45, no.4, pp.731-740, Apr. 2010. [20] S.-K. Lee, S.-J. Park, H.-J. Park, and J.-Y. Sim, “A 21 fJ/Conversion-Step 100KS/s 10 bit ADC With a Low-Noise Time-Domain Comparator for Low-Power Sensor Interface,” IEEE Journal of Solid-State Circuits,.,vol. 46, no.3, pp.651-659, Apr. 2011. [21] J. H. Cheong, K. L. Chan, P. B. Khannur, K. Tee, and M. Je, " A 400-nW 19.5-fJ/Conversion-Step 8-ENOB 80-kS/s SAR ADC in 0.18um CMOS," IEEE Trans. Citcuit and Systems II. Exp. Briefs vol.58, no.7, pp 407-411, Jul., 2011. [22] D. A. Johns, and K. Martin, Analog Integrated Circuit Design. John Wiley & Sons, In, 1997. [23] B. Razavi, Data Converiosn System Design. IEEE Press, 1995. [24] J. McCreary, and P. Gray, “All-MOS Charge-Redistribution Analog-to-Digital Conversion Techniques I, ” IEEE Journal of Solid-State Circuits, vol. 10, no. 6, pp. 371-379, Dec. 1975. [25] S. O'Driscoll, K. V.Shenoy, and T. H. Meng, “Adaptive Resolution ADC Array for an Implantable Neural Sensor, ” IEEE Trans. Biomed. Circuit Syst. vol.5, no.2, pp.120-130, April 2011. [26] B. Razavi, Design of Analog CMOS Integrated Circuits. 1st ed. New York, NY: Mcgraw-Hill, 2001. [27] A. Rossi, G. Fucili, “Nonredundant successive approximation register for A/D converters,” Electronics Letters, Vol.32, no.12, pp.1055-1057, Jun. 1996. [28] R. K .Hester, K.-S. Tanm M. D. Wit, J. W. Fattaruso, S. Kiriaki, and J. R. Hellums, “Fully Differentail ADC with rail-to-rail common-mode range and non-linear capacitor compensation, ” IEEE Journal of Solid-State Circuits, vol. 25, no. 1, pp. 173-183, Feb. 1990. [29] Y. S. Yee, L. M. Terman, L. G. Heller, “A Two-Stage Weighted Capacitor Network for D/A-A/D Conversion,” IEEE Journal of Solid-State Circuits, Vol.14, no.4, pp.778-781, Aug. 1979. [30] S.-K Lee, S-J Park, Y. Suh, H.-J. Park, and J.-Y. Sim,“ A 1.3?巰 0.6V 8.7-ENOB successive approximation ADC in 0.18um CMOS, ” in VLSI Symp. Tech. Dig., Jun.2009,pp.242-243. [31] Y. Zhu, C.-H. Chan, U.-F. Chio, S.-W. Sin, S.-P. U, and R. P. Martins, “A voltage feedback charge compensation technique for split DAC architecture in SAR ADCs, ” in IEEE Int. Symposium on Circuits and Systems, May 2010, pp.4061-4064. [32] Y. Chen, X. Zhu, H. Tamura, M. Kibune, Y. Tomita, T. Hamada, M.Yoshioka, K. Ishikawa, T. Takayama, J. Ogawa, S. Tsukamoto, and T. Kuroda, “Split capacitor DAC mismatch calibration in successive approximation ADC, ” in IEEE Custom Integrated Circuits Conference, Sept. 2009, pp. 279-282. [33] P.J.A. Harpe, C. Chou, Y. Bi, N. P. van der Meijs, X. Wang, K. Philips, G. Dolmans, and H. de Groot, “A 26w 8 bit 10MS/S Asynchronous SAR ADC for Low Energy Radios,” IEEE Journal of Solid-State Circuits, vol. 46, NO. 7, pp. 1-11, Jul. 2011. [34] P. Harpe, C. Chou, X. Wang, G. Dolmans, and H. de Groot, “A 12fJ/Conversion-Step 8bit 10MS/S Asynchronous SAR ADC for Low Energy Radios,” in Proceedings of the ESSCIRC, , Sept. 2010, pp. 214-217. [35] C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, and C.-M. Huang, “ A 1V 11fJ/Conversion-Step 10bit 10MS/s Asynchronous SAR ADC in 0.18?慆 CMOS,” in VLSI Symp. Tech. Dig., Jun.2010,pp.241-242. [36] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE Journal of Solid-State Circuits, vol. 34, no.5, pp. 599–606, May 1999. [37] M. Yoshioka, K. Ishikawa, T. Takayama, and S. Tsukamoto, “A 10-b 50-MS/s 820-?巰 SAR ADC With On-Chip Digital Calibration, ” IEEE Trans. Biomed. Circuit Syst. vol.4, no.6, pp.410-416, April 2010. [38] R. Sekimiti, A. Shikata, Tadahiro, and H.Ishikuro, “A 40-nm 50S/s-8MS/s Ultra Low Voltage SAR ADC with Timing Optimized Asynchronous Clock Generator,” in Proceedings of the ESSCIRC , Sept. 2011, pp. 471-474. [39] S. U. Ay, “A CMOS Energy Harvesting and Imaging (EHI) Active Pixel Sensor (APS) Imager for Retinal Prosthesis, ” IEEE Trans. Biomed. Circuit Syst. vol.5, no.6, pp.535-545, Dec. 2011.
|