跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 06:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:藍柏祥
研究生(外文):Lan, Po-Hsiang
論文名稱:對於高效能、寬負載直流對直流切換式降壓轉換器之電路實現與設計考量
論文名稱(外文):Circuit Implementation and Design Considerations of the Highly-Efficient DC-DC Step-Down Switching Converter ICs Over a Wide Workload Range
指導教授:黃柏鈞黃柏鈞引用關係
指導教授(外文):Huang, Po-Chiun
學位類別:博士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:135
中文關鍵詞:直流對直流切換式降壓轉換器脈波寬度調變模式脈波頻率調變模式分散式電源管理系統溫度感測機制
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文針對手持式行動裝置應用,提出兩個高效能、寬負載的降壓轉換器。在手持式的行動裝置應用中,負載電流的範圍約從數個毫安培到數百毫安培,因此,對於有限的電池電量而言,如何做到高效能、寬負載的特性表現將是電源模組管理的首要考量。此外,針對系統單晶片以及未來三維空間晶片設計的散熱問題,本篇論文也將提出一個具有溫度感測並搭配開啟關閉雙引擎的分散式電源管理系統,在追求高效能的表現外,期望能兼具有智慧型的電源管理功能。

論文的第一部份將討論一個以數位方式調變的電壓模式控制直流對直流降壓轉換器。為了要達到高效能、寬負載的特性表現,Dual-或Tri-Mode等多模控制器為現今主流,透過切割操作的負載範圍,選擇其一具有較高的電源轉換效率,以期達到高效能、寬負載的特性表現,然而此種方法的致命傷在於需要一個準確的電流感測器,以切割負載的操作範圍。有鑑於此,傳統上有另一種Off-Time Modulation的調變方式,無須準確的電流感測器便可以達到高效能、寬負載的特性表現。若在數位領域實現其調變方式,則可額外加入兩個輔助的控制器:其一可提升負載操作範圍,其二可降低迴授電路的能耗,提升轉換器的電源轉換效率。

論文的第二部份將討論一個以類比方式調變的電流模式控制直流對直流降壓轉換器,透過鎖頻迴路的協助,達到高效能、寬負載的特性表現。傳統的電流模式控制直流對直流降壓轉換器,對於連續導通模式與不連續導通模式皆有其困難之處,透過Off-Time Modulation的調變方式,將連續導通模式與不連續導通模式的優勢結合,並同時避免高速電流感測器的使用與逆電流的發生。晶片的實現是透過0.35-μm的製程完成,輸入電壓範圍2.7到4.3-V,切換頻率由100 kHz到600 kHz,電源轉換效率於負載25毫安培到450毫安培均有90%。

論文的第三部份將針對晶片散熱的問題,提出具有溫度感測並搭配開啟關閉雙引擎的分散式電源管理系統。對於系統單晶片的設計中,有日益將電源模組整合的趨勢,因此除了致力於降低系統核心的能耗外,電源模組的散熱問題也不容忽視。為了能夠將模組的熱源分散,勢必須將系統拆成分散式的電源管理系統,而分散式的管理系統遠在1971年就已被廣泛採用,不過當初使用的目的並非為了解決散熱的問題,而是透過並聯的概念將電流平均分布至各個模組間。在引用了分散式的電源管理系統的想法後,將溫度參數一併與電流模式控制轉換器結合,由模擬結果觀察得到系統對於溫度的調變量約為2.5mA/°C,轉換器的切換頻率可由10 kHz延伸到5 MHz,電源轉換效率於負載20毫安培到400毫安培可超過79%。
This dissertation presents two highly-efficient buck converter ICs for cellular phone applications. In cellular phones, the load current demanded by the on-board circuitry varies from below 10 mA up to a few hundred mA. Thus, a highly-efficient feature over a wide load range is of high priority for power management units (PMUs), since the total energy is limited by the capacity of a single cell Li-ion battery. Additionally, a temperature-aware current-mode control multi-phase buck converter for 3-D IC applications is also presented. In 3-D stacking architecture, the overheating problem is not easy to overcome with the thermal grease. By distributing the power module units to avoid the hot spot, smart power management is important for the cooling mechanism besides exploring the new materials.

The first work exhibits a digitally-controlled voltage-mode step-down converter with asynchronous power saving technique. To meet the growing demand over a wide load range of interest, pulse-width modulation (PWM) and pulse-frequency modulation (PFM) are two widespread control schemes in the switching converters. With the proposed asynchronous power saving technique, combined with the off-time modulation, a very high efficiency of at least 90% is achieved experimentally from 3 to 400 mA load conditions without embedded sensing circuitry. The digitally-controlled voltage mode step-down converter IC, fabricated in a 0.18-μm CMOS process, takes 1.8 mm2 total area and demonstrates equal or better performance compared to the state-of-the-art analog switchers. The converter IC is supplied with an input voltage from 2.7 to 3.6 V and the switching frequency is from 44 KHz to 1.65 MHz. The maximum output ripple is 40 mV with a 10-μF off-chip capacitor and a 2.2-μH off-chip inductor.

The second work exhibits a current-mode control step-down converter with assisted frequency-locked loop. The current mode controller is widely used in the switching power supply designs because of its fast response and less stability concern. However its performance at light load condition is limited by the precision of current sensing. In the second work, instead of using high speed current sensor, a frequency-locked loop (FLL) is incorporated to extend the operation range with high power efficiency. The 1.8-V output DC-DC step-down converter IC, fabricated in a standard 0.35-μm CMOS process, is supplied from 2.7 to 4.3 V. Experimental results show that this switching converter operates from 100 to 600 kHz with the efficiency higher than 90% for the load current between 25 and 450 mA. The output voltage ripple is smaller than 30 mV with a 4.7-μH inductor and a 4.7-μF capacitor.

The third work presents a temperature-aware current-mode control multi-phase buck converter IC with a wake-up and shut-down dual engine. The multi-phase characteristic is widely adopted in the distributed power system since many applications are required for more power with less size and cost. Based on the distributive concept, it offers another possible solution for 3-D IC applications to alleviate the difficulties of overheating. By making use of the paralleling configuration, the 1.8-V output DC-DC step-down converter IC, fabricated in a standard 0.35-μm CMOS process, is experimentally demonstrated with 2.5 mA/°C temperature-aware feature. The converter is supplied from 2.7 to 4.3 V and operates with 5 MHz in PWM. The minimum efficiency is 80% for the load demands from 20 to 400 mA with PWM-PFM dual-mode modulation. The output voltage ripple is smaller than 30 mV with a 1-μH inductor and a 2-μF capacitor.
第一章 引言
第二章 直流對直流降壓穩壓器的基本原理與操作說明
第三張 一個搭配非同步省電技術的高效能、寬負載數位時脈調變的直流對直流切換式降壓轉換器
第四章 一個搭配鎖頻迴路的高效能、寬負載電流模式控制直流對直流切換式降壓轉換器
第五章 一個具有溫度感測並搭配開啟關閉雙引擎的分散式多相位切換式電源管理系統
第六章 結論
[1] C. Lee and P. Mok, “A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique,” IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 3–14, Jan. 2004.
[2] H.-W. Huang, C.-C. Chien, K.-H. Chen, and S.-Y. Kuo, “Highly efficient tri-mode control of buck converters with load sensing technique,” in Proc. IEEE Power Electronics Specialists Conference (PESC), Jun. 2006, pp. 1–4.
[3] E. Torres and G. Rincon-Mora, “Electrostatic energy-harvesting and battery-charging CMOS system prototype,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 9, pp. 1938–1948, Sep. 2009.
[4] J. Xiao, A. Peterchev, J. Zhang, and S. Sanders, “A 4-μA quiescent-current dual-mode digitally controlled buck converter IC for cellular phone applications,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2342–2348, Dec. 2004.
[5] X. Zhang and D. Maksimovic, “Digital PWM/PFM controller with input voltage feedforward for synchronous buck converters,” in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), Mar. 2008, pp. 523–528.
[6] H.-W. Huang, K.-H. Chen, and S.-Y. Kuo, “Dithering skip modulation, width and dead time controllers in highly efficient DC-DC converters for system-on-chip applications,” IEEE Journal of Solid-State Circuits, vol. 42, no. 11, pp. 2451–2465, Nov. 2007.
[7] Y. Huang, H. Chen, T. Tai, and K. Chen, “Dual-section-average (DSA) analog-to-digital converter (ADC) in digital pulse width modulation (DPWM) DC-DC converter for reducing the problem of limiting cycle,” in Proc. IEEE Asian Solid-State Circuits Conf. (ASSCC), Nov. 2008, pp. 145–148.
[8] O. Trescases, A. Prodic, and W. Ng, “Digitally controlled current-mode dc–dc converter ic,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 1, pp. 219–231, Jan. 2011.
[9] Y. Chen and C. Chen, “A dc-dc buck converter chip with integrated pwm/pfm hybrid mode control circuit,” in Proc. IEEE Int. Conf. on Power Electronics and Drive Systems (PEDS), Nov. 2009, pp. 181–186.
[10] W. Lai, C. Chen, Y. Hsieh, and K. Chen, “High-efficiency slope compensator (hsc) with input-independent load condition identification in current mode dc/dc buck converters,” in Proc. IEEE Energy Conversion Congress and Exposition (ECCE), Sep. 2009, pp. 2897–2900.
[11] “Power supplies, power management, and battery management,” Maxim Integrated Products, Sunnyvale, CA, http://www.maxim-ic.com.
[12] “Power management,” Texas Instruments Incorporated, Dallas, TX, http://www.ti.com.
[13] R. Mammano, “Switching power supply topology voltage mode vs. current mode,” Elektron Journal-South African Institute of Electrical Engineers, vol. 18, no. 6, pp. 25–27, 2001.
[14] T. Szepesi, “Stabilizing the frequency of hysteretic current-mode dc/dc converters,” IEEE Transactions on Power Electronics, vol. 2, no. 4, pp. 302–312, Oct. 1987.
[15] C. Chang and R. Chang, “A novel current sensing circuit for a current-mode control CMOS DC-DC buck converter,” in Proc. IEEE Int. Symp. on VLSI Design, Automation and Test (VLSI-TSA-DAT), Apr. 2005, pp. 120–123.
[16] C. Leung, P. Mok, K. Leung, and M. Chan, “An integrated CMOS current-sensing circuit for low-voltage current-mode buck regulator,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 52, no. 7, pp. 394–397, Jul. 2005.
[17] R. Erickson and D. Maksimovi´c, Fundamentals of power electronics. Springer Netherlands, 2001.
[18] S. Zhou and G. Rincon-Mora, “A high efficiency, soft switching DC-DC converter with adaptive current-ripple control for portable applications,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 4, pp. 319–323, Apr. 2006.
[19] J. Abu Qahouq, “Control scheme for sensorless operation and detection of ccm and dcm operation modes in synchronous switching power converters,” IEEE Transactions on Power Electronics, vol. 25, no. 10, pp. 2489–2495, Oct. 2010.
[20] C. Blake, D. Kinzer, and P. Wood, “Synchronous rectifiers versus Schottky diodes: a comparison of the losses of a synchronous rectifier versus the losses of a Schottky diode rectifier,” in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), Mar. 2002, pp. 17–23.
[21] I. Jitaru, “The impact of low output voltage requirements on power converters,” in Proc. High-Frequency Power Conversion (HFPC), May 1995, pp. 1–10.
[22] M. Jovanovic, J. Lin, C. Zhou, M. Zhang, and F. Lee, “Design considerations for forward converter with synchronous rectifiers,” in Proc. International Power Conversion Conference, Oct. 1993, pp. 340–350.
[23] J. Sun, “Characterization and performance comparison of ripple-based control for voltage regulator modules,” IEEE Transactions on Power Electronics, vol. 21, no. 2, pp. 346–353, Feb. 2006.
[24] J. Li and F. Lee, “Modeling of V 2 current-mode control,” in Proc. IEEE Applied
Power Electronics Conference and Exposition (APEC), Mar. 2009, pp. 298–304.
[25] K.-Y. Cheng, F. Yu, P. Mattavelli, and F.-C. Lee, “Digital enhanced V2-type constant on-time control using inductor current ramp estimator for a buck converter with small ESR capacitors,” in Proc. IEEE Energy Conversion Congress and Exposition (ECCE), Sep. 2010, pp. 508–513.
[26] E. Stanford, “Power delivery challenges in computer platforms,” in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), Mar. 2006.
[27] S. Luo, Z. Ye, R. Lin, and F. Lee, “A classification and evaluation of paralleling methods for power supply modules,” in Proc. IEEE Power Electronics Specialists Conference (PESC), vol. 2, Jun. 1999, pp. 901–908.
[28] B. Irving and M. Jovanovic, “Analysis, design, and performance evaluation of droop current-sharing method,” in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), vol. 1, Mar. 2000, pp. 235–241.
[29] R. Ridley, B. Cho, and F. Lee, “Analysis and interpretation of loop gains of multi loop controlled switching regulators [power supply circuits],” IEEE Transactions on Power Electronics, vol. 3, no. 4, pp. 489–498, Oct. 1988.
[30] B. Patella, A. Prodic, A. Zirger, and D. Maksimovic, “High-frequency digital PWM controller IC for DC-DC converters,” IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 438–446, Jan. 2003.
[31] H. Hu, V. Yousefzadeh, and D. Maksimovic, “Nonuniform A/D Quantization for Improved Dynamic Responses of Digitally Controlled DC–DC Converters,” IEEE Transactions on Power Electronics, vol. 23, no. 4, pp. 1998–2005, Apr. 2008.
[32] Z. Lukic, N. Rahman, and A. Prodic, “Multibit Σ-Δ PWM digital controller IC for DC-DC converters operating at switching frequencies beyond 10 MHz,” IEEE Transactions on Power Electronics, vol. 22, no. 5, pp. 1693–1707, Sep. 2007.
[33] Z. Zhao and A. Prodic, “Continuous-time digital controller for high-frequency DC-DC converters,” IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 564–573, Mar. 2008.
[34] A. Peterchev and S. Sanders, “Quantization resolution and limit cycling in digitally controlled PWM converters,” IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 301–308, Jan. 2003.
[35] A. Dancy and A. Chandrakasan, “Ultra low power control circuits for PWM converters,” in Proc. IEEE Power Electronics Specialists Conference (PESC), vol. 1, Jun. 1997, pp. 21–27.
[36] A. Dancy, R. Amirtharajah, and A. Chandrakasan, “High-efficiency multiple-output DC-DC conversion for low-voltage systems,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 8, no. 3, pp. 252–263, Mar. 2000.
[37] R. Paul, L. Sankey, L. Corradini, Z. Popovic, and D. Maksimovic, “Power Management of Wideband Code Division Multiple Access RF Power Amplifiers With Antenna Mismatch,” IEEE Transactions on Power Electronics, vol. 25, no. 4, pp. 981–991, Apr. 2010.
[38] J. Li, Y. Qiu, Y. Sun, B. Huang, M. Xu, D. Ha, and F. Lee, “High resolution digital duty cycle modulation schemes for voltage regulators,” in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), Mar. 2007, pp. 871–876.
[39] V. Kursun, S. Narendra, V. De, and E. Friedman, “Low-voltage-swing monolithic dc-dc conversion,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 51, no. 5, pp. 241–248, May 2004.
[40] T. Takayama and D. Maksimovic, “A power stage optimization method for monolithic DC-DC converters,” in Proc. IEEE Power Electronics Specialists Conference (PESC), Jun. 2006, pp. 1–7.
[41] S. Buso and P. Mattavelli, “Digital control in power electronics,” Synthesis Lectures on Power Electronics, vol. 1, no. 1, pp. 1–158, 2006.
[42] T. Martin and S. Ang, “Digital control for switching converters,” in Proc. IEEE Int. Symp. on Industrial Electronics (ISIE), vol. 2, Jun. 1995, pp. 480–484.
[43] Y. Duan and H. Jin, “Digital controller design for switch mode power converters,” in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), vol. 2, Mar. 2002, pp. 967–973.
[44] G. Franklin, M. Workman, and D. Powell, Digital control of dynamic systems. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1997.
[45] V. Vorperian, “Simplified analysis of pwm converters using model of pwm switch. ii. discontinuous conduction mode,” IEEE Transactions on Aerospace and Electronic Systems, vol. 26, no. 3, pp. 497–505, Mar. 1990.
[46] R. Ridley, “A new continuous-time model for current-mode control with constant frequency, constant on-time, and constant off-time, in CCM and DCM,” in Proc. IEEE Power Electronics Specialists Conference (PESC), Jun. 2002, pp. 382–389.
[47] M. Kazimierczuk, “Transfer function of current modulator in pwm converters with current-mode control,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 47, no. 9, pp. 1407–1412, Sep. 2000.
[48] T. Lee, H. Samavati, and H. Rategh, “5-GHz CMOS wireless LANs,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 1, pp. 268–280, Jan. 2002.
[49]http://news.consumerreports.org/electronics/2012/03/our-test-finds-new-ipad-hits-116-degrees-while-running-games.html.
[50] B. Mammano, “Distributed power systems,” in Unitrode Power Supply Design Seminar SEM-900, Topic, vol. 1, 1993.
[51] W. Tabisz, M. Jovanovic, and F. Lee, “Present and future of distributed power systems,” in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), Mar. 1992, pp. 11–18.
[52] S. Luo, “A review of distributed power systems part i: Dc distributed power system,” IEEE Aerospace and Electronic Systems Magazine, vol. 20, no. 8, pp. 5–16, Aug. 2005.
[53] C. Xu and K. Cheng, “A survey of distributed power system ac versus dc distributed power system,” in Proc. IEEE Int. Conf. on Power Electronics Systems and Applications (PESA), Jun. 2011, pp. 1–12.
[54] K. Yotsumoto, S. Muroyama, S. Matsumura, and H. Watanabe, “Design for a highly efficient distributed power supply system based on reliability analysis,” in Proc. IEEE Int. Telecommunications Energy Conference (INTELEC), Nov. 1988, pp. 545–550.
[55] G. Hua, W. Tabisz, C. Leu, N. Dai, R. Watson, and F. Lee, “Development of a dc distributed power system,” in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), Mar. 1994, pp. 763–769.
[56] R. E. Best, Phase-Locked Loops, 2007, Ch. 3.
[57] S. Kao and S. Liu, “A delay-locked loop with statistical background calibration,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 55, no. 10, pp. 961–965, Oct. 2008.
[58] W. Liou, M. Yeh, and Y. Kuo, “A high efficiency dual-mode buck converter IC for portable applications,” IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 667–677, Mar. 2008.
[59] J. Hora, J. Zeng, and W. Liou, “Asynchronous dual-mode buck converter design with protection circuits in 0.13_m CMOS process for battery applications,” in Proc. IEEE Int. Conf. on ASIC (ASICON), Oct. 2009, pp. 1314–1317.
[60] S. Wang, Y. Lee, Y. Lai, and K. Chen, “Quadratic differential and integration technique in V2 control buck converter with small ESR capacitor,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), Sep. 2009, pp. 211–214.
[61] M. Du, H. Lee, and J. Liu, “A 5-mhz 91% peak-power-efficiency buck regulator with auto-selectable peak-and valley-current control,” IEEE Journal of Solid-State Circuits, no. 99, pp. 1928–1939, Aug. 2011.
[62] M. Du and H. Lee, “An integrated speed-and accuracy-enhanced cmos current sensor with dynamically biased shunt feedback for current-mode buck regulators,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 10, pp. 2804–2814, Oct. 2010.
[63] A. Parayandeh, O. Trescases, and A. Prodic, “10 mhz peak current mode dc-dc converter ic with calibrated current observer,” in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), Mar. 2011, pp. 897–903.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top