[1] T. Gilchrist, “Fuel cell to the fore,” IEEE Spectrum, Vol. 35, No. 11, pp.35-40, 1998.
[2] S. R. Bull, “Renewable energy today and tomorrow,” Proceedings of the IEEE, Vol. 89, No. 8, pp. 1216-1226, Aug. 2001.
[3] G. Connor and H. W. Whittington, “A vision of true costing [renewable energy],” Engineering Science and Education Journal, Vol. 10, No. 1, pp. 4-12, Feb. 2001.
[4] M. Begovic, A. Pregelj, A. Rohatgi and C. Honsberg, “Green power: status and perspectives,” Proceedings of the IEEE, Vol. 89, No. 12, pp. 1734-1743, Dec. 2001.
[5] M. Ellis, M. Von Spakovsky and D. Nelson, “Fuel cell systems: efficient, flexible energy conversion for 21st century,” Proceedings of the IEEE, vol. 89, no. 12, pp. 1808-1818, Dec. 2001.
[6] E. Koutroulis and K. Kalaitzakis, “Design of a maximum power tracking system for wind-energy-conversion applications,” IEEE Trans. on Industrial Electronics, vol. 53, no. 2, pp. 486-494, Apr. 2006.
[7] R. J. Wai and R. Y. Duan, “High-efficiency power conversion for low power fuel cell generation system,” IEEE Trans. on Power Electronics, vol. 20, No. 4, pp. 847-856, Jul. 2005.
[8] Q. Li and P. Wolfs, “A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations,” IEEE Trans. on Power Electronics, vol. 23, No. 3, pp. 1320 - 1333, May. 2008.
[9] R. J. Wai, W. H. Wang and C. Y Lin, “High-performance stand-alone photovoltaic generation system,” IEEE Trans. on Industrial Electronics, vol. 55, No. 1, pp. 240-250, Jan. 2008.
[10] R. J. Wai and W. H. Wang, “Grid-connected photovoltaic generation system,” IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications, vol. 55, No. 3, pp. 953-964, Apr. 2008.
[11] S. B. Kjaer, J. K. Pedersen and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Trans. Industry Applications, vol. 41, No. 5, pp. 1292-1306, Sep./Oct. 2005.
[12] R. J. Wai, C. Y. Lin, R. Y. Duan and Y. R. Chang, “High-efficiency DC-DC converter with high voltage gain and reduced switch stress,” IEEE Trans. on Industrial Electronics, vol. 54, No. 1, pp. 354 - 364 , Feb. 2007.
[13] S. K. Changchien, T. J. Liang, J. F. Chen and L. S. Yang, “Step-up dc-dc converter by coupled inductor and voltage-lift technique,” IET Power Electronics , Vol. 3, Iss. 3, pp. 369-378, 2010.
[14] S. K. Changchien, T. J. Liang, J. F. Chen and L. S. Yang, “Novel high step-up dc-dc converter for fuel cell energy conversion system,” IEEE Trans. on Industrial Electronics, Vol. 57, No. 6, pp. 2007-2017, Jun. 2010.
[15] S. V. Araujo, R. P. Torrico-Bascope and G. V. Torrico-Bascope, “Highly efficient high step-up converter for fuel-cell power processing based on three-state commutation cell,” IEEE Trans. on Industrial Electronics, Vol. 57, No. 6, pp. 1987-1997, Jun. 2010.
[16] W. Li, Y. Zhao, Y. Deng and X. He, “Interleaved converter with voltage multiplier cell for high step-up and high efficiency conversion,” IEEE Trans. on Industrial Electronics, Vol. 25, No. 9, pp. 2397-2408, Sep. 2010.
[17] T. J. Liang, S. M. Chen, L. S. Yang, J. F. Chen and I. Adrian. , “A single switch boost-flyback DC-DC converter integrated with switched-capacitor cell,” IEEE 8th International Conference on Power Electronics and ECCE Asia (ICPE & ECCE), pp.2782 – 2787, May. 2011.
[18] T. J. Liang and K. C. Tseng, “Analysis of integrated boost-flyback step-up converter,” IEE Proceedings-Electric Power Applications, Vol. 152, No. 2, pp. 217-225, Mar. 2005.
[19] K. C. Tseng and T. J. Liang, “Novel high-efficiency step-up converter,” IEE Proceedings-Electric Power Applications, Vol. 151, No. 2, pp. 182-190, Mar. 2004.
[20] O. Krykunov, “Analysis of the extended forward converter for fuel cell applications,” IEEE International Symposium on Industrial Electronics, pp. 661-666, 2007.
[21] R. Gules, L. L. Pfitscher and L. C. Franco, “An interleaved boost DC-DC converter with large conversion ratio,” IEEE International Symposium on Industrial Electronics, pp. 411-416, 2003.
[22] J. Wen, T. Jin and K. Smedley, “A new interleaved isolated boost converter for high power applications,” IEEE Applied Power Electronics Conference and Exposition, pp. 79–84, Mar. 2006.
[23] W. Li and X. He, “ZVT interleaved boost converters for high-efficiency, high stepup dc-dc conversion,” IET Electric Power Applications, vol. 1, no. 2, pp. 284–290,Mar. 2007.
[24] P. Thounthong, P. Sethakul, S. Rael and B. Davat, “Design and implementation of 2-phase interleaved boost converter for fuel cell power source,” IET Conference on Power Electronics, Machines and Drives, pp. 91–95, Apr.,2008.
[25] 劉威志, “新型高升壓比交錯式直流轉換器之建模與設計,” 國立清華大學電機工程研究所碩士論文,民國九十八年。[26] Y. Jang and M. Jovanovic, “Interleaved boost converter with intrinsic voltagedoubler characteristic for universal-line PFC front end,” IEEE Trans. on Power Electronics, vol. 22, no. 4, pp. 1394–1401, Jul. 2007.
[27] S. K. Han, H. K. Yoon, G.W. Moon, M. J. Youn, Y. H. Kim and K. H. Lee, “A new active clamping zero-voltage switching PWM current-fed half-bridge converter,” IEEE Trans. on Power Electronics, vol. 20, no. 6, pp. 1271–1279, Nov. 2005.
[28] Y. Jang and M. Jovanovic, “New two-inductor boost converter with auxiliary transformer,” IEEE Trans. on Power Electronics, vol. 19, no. 1, pp. 169–175, Jan. 2004.
[29] X. Kong and A. Khambadkone, “Analysis and implementation of a high efficiency, interleaved current-fed full bridge converter for fuel cell system,” IEEE Trans. on Power Electronics, vol. 22, no. 2, pp. 543–550, Mar.2007.
[30] S. J. Jang, C. Y. Won, B. K. Lee and J. Hur, “Fuel cell generation system with a new active clamping current-fed half-bridge converter,” IEEE Trans. on Energy Conversion, vol. 22, no. 2, pp. 332–340, Jun. 2007.
[31] J. M. Kwon, E. H. Kim, B. H. Kwon and K. H. Nam, “High-efficiency fuel cell power conditioning system with input current ripple reduction,” IEEE Trans. on Industrial Electronics, vol. 56, no. 3, pp. 826 - 834, Mar. 2009.
[32] M. Delshad and H. Farzanehfard, “High step-up zero-voltage switching current-fed isolated pulse width modulation DC-DC converter,” IET Power Electronics, vol. 4, no. 3, pp. 316 - 322, Apr. 2011.
[33] W. Li, J. Liu, J. Wu and X. He, “Design and analysis of isolated ZVT boost converters for high-efficiency and high-step-up Applications,” IEEE Trans. on Power Electronics, vol. 22, no. 6, pp. 2363 - 2374, Nov. 2007.
[34] H. Kim, C. Yoon and S. Choi, “An improved current-fed ZVS isolated boost converter for fuel cell applications,” IEEE Trans. on Power Electronics, vol. 25, no. 9, pp. 2357 - 2364, Sep. 2010.
[35] P.Wolfs, “A current-sourced dc-dc converter derived via the duality principle from the half-bridge converter,” IEEE Trans. on Industrial Electronics, vol. 40, no. 1, pp. 139–144, Feb. 1993.
[36] Y. Jang and M. Jovanovic, “New two-inductor boost converter with auxiliary transformer,” IEEE Trans. on Power Electronics, vol. 19, no. 1, pp. 169–175, Jan. 2004.
[37] A. K. Rathore, A. K. S. Bhat and R. Oruganti, “ Analysis, design and experimental results of wide range ZVS active-clamped L-L Type current-fed DC/DC converter for fuel cells to utility interface,” IEEE Trans. on Industrial Electronics, vol. 59, no. 1, pp. 473 - 485, Jan. 2012.
[38] N. Kasa, T. Iida and L. Chen, “ Flyback inverter controlled by sensorless current MPPT for photovoltaic power system,” IEEE Trans. on Industrial Electronics, vol. 52, no. 4, pp. 1145 - 1152, Aug. 2005.
[39] Y. Choe, J. W. Ahn, J. G. Lee and S. H. Baek, “ Dynamic simulator for a PEM fuel cell system with a PWM DC/DC Converter,” IEEE Trans. on Energy Conversion, vol. 23, no. 2, pp. 669 - 680, Jun. 2008.
[40] Y. Jang, M. M. Jovanovic and D. L. Dillman, “ Hold-up time extension Circuit with integrated magnetics,” IEEE Trans. on Power Electronics, vol. 21, no. 2, pp. 394 - 400, Mar. 2006.
[41] “2.0 amp output current IGBT fate drive optocoupler,” Aglient Technologies.