|
1. Barnham, K.J., C.L. Masters, and A.I. Bush, Neurodegenerative diseases and oxidative stress. Nature Reviews Drug Discovery, 2004. 3(3): p. 205-214. 2. McBride, H.M., M. Neuspiel, and S. Wasiak, Mitochondria: More Than Just a Powerhouse. Current Biology, 2006. 16(14): p. R551-R560. 3. Taylor, R.W. and D.M. Turnbull, Mitochondrial DNA mutations in human disease. Nature Reviews Genetics, 2005. 6(5): p. 389-402. 4. Lin, M.T. and M.F. Beal, Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006. 443(7113): p. 787-795. 5. Andersen, J.K., Oxidative stress in neurodegeneration: cause or consequence? Nature Reviews Neuroscience, 2004. 10(7): p. S18-S25. 6. Starkov, A.A., The Role of Mitochondria in Reactive Oxygen Species Metabolism and Signaling. Annals of the New York Academy of Sciences, 2008. 1147(1): p. 37-52. 7. Rouault, T.A. and W.H. Tong, Iron–sulfur cluster biogenesis and human disease. Trends in Genetics, 2008. 24(8): p. 398-407. 8. Beinert, H., Iron-Sulfur Clusters: Nature's Modular, Multipurpose Structures. Science, 1997. 277(5326): p. 653-659. 9. Beinert, H. and P. Kiley, Redox control of gene expression involving iron-sulfur proteins. Change of oxidation-state or assembly/disassembly of Fe-S clusters? FEBS Lett, 1996. 382(1-2): p. 218-9; discussion 220-1. 10. Rouault, T.A., et al., An iron-sulfur cluster plays a novel regulatory role in the iron-responsive element binding protein. Biometals, 1992. 5(3): p. 131-40. 11. Gaudu, P. and B. Weiss, SoxR, a [2Fe-2S] transcription factor, is active only in its oxidized form. Proceedings of the National Academy of Sciences of the United States of America, 1996. 93(19): p. 10094-10098. 12. Hidalgo, E., et al., Binuclear [2Fe-2S] clusters in the Escherichia coli SoxR protein and role of the metal centers in transcription. J Biol Chem, 1995. 270(36): p. 20908-14. 13. Hentze, M.W. and L.C. Kuhn, Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 1996. 93(16): p. 8175-8182. 14. King, A., M.A. Selak, and E. Gottlieb, Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene, 2006. 25(34): p. 4675-4682. 15. Friedrich, T. and B. B?尒tcher, The gross structure of the respiratory complex I: a Lego System. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2004. 1608(1): p. 1-9. 16. Janssen, R.J.R.J., et al., Mitochondrial complex I: Structure, function and pathology. Journal of Inherited Metabolic Disease, 2006. 29(4): p. 499-515. 17. Carroll, J., Analysis of the Subunit Composition of Complex I from Bovine Heart Mitochondria. Molecular & Cellular Proteomics, 2003. 2(2): p. 117-126. 18. Smeitink, J.A.M., et al., Nuclear genes of human complex I of the mitochondrial electron transport chain: state of the art. Human Molecular Genetics, 1998. 7(10): p. 1573-1579. 19. Hinchliffe, P. and L.A. Sazanov, Organization of iron-sulfur clusters in respiratory complex I. Science, 2005. 309(5735): p. 771-4. 20. Sazanov, L.A., Structure of the Hydrophilic Domain of Respiratory Complex I from Thermus thermophilus. Science, 2006. 311(5766): p. 1430-1436. 21. Hinchliffe, P., Organization of Iron-Sulfur Clusters in Respiratory Complex I. Science, 2005. 309(5735): p. 771-774. 22. Brandt, U., Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem, 2006. 75: p. 69-92. 23. de Coo, R., et al., Molecular cloning and characterization of the active human mitochondrial NADH:ubiquinone oxidoreductase 24-kDa gene (NDUFV2) and its pseudogene. Genomics, 1995. 26(3): p. 461-6. 24. Hattori, N., et al., Structural organization and chromosomal localization of the human nuclear gene (NDUFV2) for the 24-kDa iron-sulfur subunit of complex I in mitochondrial respiratory chain. Biochem Biophys Res Commun, 1995. 216(3): p. 771-7. 25. Almeida, T., et al., The 24-kDa iron-sulphur subunit of complex I is required for enzyme activity. Eur J Biochem, 1999. 265(1): p. 86-93. 26. Weidner, U., et al., The gene locus of the proton-translocating NADH: ubiquinone oxidoreductase in Escherichia coli. Organization of the 14 genes and relationship between the derived proteins and subunits of mitochondrial complex I. J Mol Biol, 1993. 233(1): p. 109-22. 27. Duborjal, H., et al., Immuno-purification of a dimeric subcomplex of the respiratory NADH-CoQ reductase of Rhodobacter capsulatus equivalent to the FP fraction of the mitochondrial complex I. FEBS Lett, 1997. 405(3): p. 345-50. 28. Yano, T., et al., Expression of the 25-kilodalton iron-sulfur subunit of the energy-transducing NADH-ubiquinone oxidoreductase of Paracoccus denitrificans. Biochemistry, 1994. 33(2): p. 494-9. 29. Yano, T., et al., The proton-translocating NADH-quinone oxidoreductase (NDH-1) of thermophilic bacterium Thermus thermophilus HB-8. Complete DNA sequence of the gene cluster and thermostable properties of the expressed NQO2 subunit. J Biol Chem, 1997. 272(7): p. 4201-11. 30. Kerscher, S., et al., Processing of the 24 kDa subunit mitochondrial import signal is not required for assembly of functional complex I in Yarrowia lipolytica. Eur J Biochem, 2004. 271(17): p. 3588-95. 31. Zu, Y., et al., Redox properties of the [2Fe-2S] center in the 24 kDa (NQO2) subunit of NADH:ubiquinone oxidoreductase (complex I). Biochemistry, 2002. 41(31): p. 10056-69. 32. Yano, T., et al., Identification of amino acid residues associated with the [2Fe-2S] cluster of the 25 kDa (NQO2) subunit of the proton-translocating NADH-quinone oxidoreductase of Paracoccus denitrificans. FEBS Lett, 1994. 354(2): p. 160-4. 33. Sazanov, L.A. and P. Hinchliffe, Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science, 2006. 311(5766): p. 1430-6. 34. Videira, A., Complex I from the fungus Neurospora crassa. Biochim Biophys Acta, 1998. 1364(2): p. 89-100. 35. Swerdlow, R.H., et al., Complex I polymorphisms, bigenomic heterogeneity, and family history in Virginians with Parkinson's disease. J Neurol Sci, 2006. 247(2): p. 224-30. 36. Xu, C., et al., Further support for association of the mitochondrial complex I subunit gene NDUFV2 with bipolar disorder. Bipolar Disord, 2008. 10(1): p. 105-10. 37. Washizuka, S., et al., Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet, 2003. 120B(1): p. 72-8. 38. Kim, S.H., et al., The reduction of NADH ubiquinone oxidoreductase 24- and 75-kDa subunits in brains of patients with Down syndrome and Alzheimer's disease. Life Sci, 2001. 68(24): p. 2741-50. 39. Karry, R., E. Klein, and D. Ben Shachar, Mitochondrial complex I subunits expression is altered in schizophrenia: a postmortem study. Biol Psychiatry, 2004. 55(7): p. 676-84. 40. Ben-Shachar, D. and R. Karry, Sp1 expression is disrupted in schizophrenia; a possible mechanism for the abnormal expression of mitochondrial complex I genes, NDUFV1 and NDUFV2. PLoS ONE, 2007. 2(9): p. e817. 41. Benit, P., et al., Mutant NDUFV2 subunit of mitochondrial complex I causes early onset hypertrophic cardiomyopathy and encephalopathy. Hum Mutat, 2003. 21(6): p. 582-6. 42. Barrientos, A., In vivo and in organello assessment of OXPHOS activities. Methods, 2002. 26(4): p. 307-16. 43. Adam-Vizi, V. and C. Chinopoulos, Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci, 2006. 27(12): p. 639-45. 44. Weiss, H., et al., Characterization of Neurospora crassa mitochondria prepared with a grind-mill. Eur J Biochem, 1970. 14(1): p. 75-82. 45. Kerscher, S., et al., The three families of respiratory NADH dehydrogenases. Results Probl Cell Differ, 2008. 45: p. 185-222. 46. Wallace, D.C., Mitotic segregation of mitochondrial DNAs in human cell hybrids and expression of chloramphenicol resistance. Somat Cell Mol Genet, 1986. 12(1): p. 41-9. 47. Letellier, T., et al., The kinetic basis of threshold effects observed in mitochondrial diseases: a systemic approach. Biochem J, 1994. 302 ( Pt 1): p. 171-4. 48. Rossignol, R., et al., Mitochondrial threshold effects. Biochem J, 2003. 370(Pt 3): p. 751-62. 49. James, A.M., et al., Altered mitochondrial function in fibroblasts containing MELAS or MERRF mitochondrial DNA mutations. Biochem J, 1996. 318 ( Pt 2): p. 401-7.
|